Select solutions to Homework \#2

7.16 See Example 7.13 in the text for several examples.
7.18 (a) By Theorem 7.15,

$$
C \subseteq f^{-1}[f(C)]
$$

Thus, it remains to show the reverse inclusion. Let $x \in f^{-1}[f(C)]$. Then, by definition of the pre-image, $f(x) \in f(C)$. This implies, by definition of the image, that $f(x)=f(c)$ for some $c \in C$. As f is injective, we conclude that $x=c \in C$, and hence $x \in C$. Therefore, it follows that

$$
C=f^{-1}[f(C)]
$$

(b) By Theorem 7.15,

$$
\begin{equation*}
f\left(f^{-1}(D)\right) \subseteq D \tag{1}
\end{equation*}
$$

Thus, it remains to show the reverse inclusion. Let $y \in D \subseteq B$. Since f is surjective, there exists $x \in A$ such that $f(x)=y$. In other words, $x \in f^{-1}(D)$. Since $f(x)=y$, this implies that $y \in f\left(f^{-1}(D)\right)$, and thus

$$
D \subseteq f\left(f^{-1}(D)\right)
$$

In view of (1), we conclude that

$$
D=f\left(f^{-1}(D)\right)
$$

7.33 (b) Let C be an arbitrary element of E. Then $C=E_{x}$ for some $x \in A$. Thus, by definition of the function g, we have

$$
g(x)=E_{x}=C
$$

Since $C \in E$ was arbitrary, we conclude that g is surjective. [Note: this function need not be injective.]
10.4 Define

$$
N=\left\{n \in \mathbb{N}: 1^{3}+\cdots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}\right\}
$$

It easily follows that $1 \in N$. Suppose $n \in N$. Then

$$
\begin{aligned}
1^{3}+\cdots n^{3}+(n+1)^{3} & =\frac{1}{4} n^{2}(n+1)^{2}+(n+1)^{3} \\
& =\frac{1}{4}(n+1)^{2}\left(n^{2}+4 n+4\right) \\
& =\frac{1}{4}(n+1)^{2}(n+2)^{2}
\end{aligned}
$$

Thus, we conclude that $n+1 \in N$. By the principle of induction, $N=\mathbb{N}$, and the proof is complete. [Observe that the solution to this problem immediately verifies Exercise 10.5 as well.]

