Select solutions to Homework #2

- 7.16 See Example 7.13 in the text for several examples.
- 7.18 (a) By Theorem 7.15,

(b) By Theorem 7.15,

$$C \subseteq f^{-1}[f(C)].$$

Thus, it remains to show the reverse inclusion. Let $x \in f^{-1}[f(C)]$. Then, by definition of the pre-image, $f(x) \in f(C)$. This implies, by definition of the image, that f(x) = f(c) for some $c \in C$. As f is injective, we conclude that $x = c \in C$, and hence $x \in C$. Therefore, it follows that

$$C = f^{-1}[f(C)].$$

$$f(f^{-1}(D)) \subseteq D.$$
 (1)

Thus, it remains to show the reverse inclusion. Let $y \in D \subseteq B$. Since f is surjective, there exists $x \in A$ such that f(x) = y. In other words, $x \in f^{-1}(D)$. Since f(x) = y, this implies that $y \in f(f^{-1}(D))$, and thus

 $D \subseteq f(f^{-1}(D)).$

In view of (1), we conclude that

$$D = f(f^{-1}(D)).$$

7.33 (b) Let C be an arbitrary element of E. Then $C = E_x$ for some $x \in A$. Thus, by definition of the function g, we have

$$g(x) = E_x = C.$$

Since $C \in E$ was arbitrary, we conclude that g is surjective. [Note: this function need not be injective.]

10.4 Define

$$N = \left\{ n \in \mathbb{N} : 1^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2 \right\}.$$

It easily follows that $1 \in N$. Suppose $n \in N$. Then

$$1^{3} + \dots n^{3} + (n+1)^{3} = \frac{1}{4}n^{2}(n+1)^{2} + (n+1)^{3}$$
$$= \frac{1}{4}(n+1)^{2}(n^{2} + 4n + 4)$$
$$= \frac{1}{4}(n+1)^{2}(n+2)^{2}.$$

Thus, we conclude that $n + 1 \in N$. By the principle of induction, $N = \mathbb{N}$, and the proof is complete. [Observe that the solution to this problem immediately verifies Exercise 10.5 as well.]