Select solutions to Homework \#10

21.10 (a) Let $\varepsilon>0$. Since f is continuous at c, there exists $\delta>0$ such that $|f(x)-f(c)|<\varepsilon$ whenever $|x-c|<\delta$ and $x \in D$. Thus, by the reverse triangle inequality, for $|x-c|<\delta$ and $x \in D$, we obtain

$$
\|f(x)|-|f(c) \| \leq|f(x)-f(c)|<\varepsilon .
$$

Hence, $|f|$ is continuous at c.
(b) No. Consider

$$
f(x)=\left\{\begin{aligned}
-1, & x \geq 0, \\
1, & x<0 .
\end{aligned}\right.
$$

22.8 Define $h:[a, b] \rightarrow \mathbb{R}$ by $h(x)=f(x)-g(x)$. By Theorem 21.10, it follows that h is continuous. By supposition, we find that $h(a)=f(a)-g(a) \leq 0$ and $h(b)=f(b)-g(b) \geq 0$. If $h(a)=0$, then we can take $c=a$. Similarly, if $h(b)=0$, take $c=0$. Thus, it suffices to consider the case where $h(a) \neq 0$ and $h(b) \neq 0$. In this setting, the intermediate value theorem implies that there exists $c \in(a, b)$ such that $h(c)=f(c)-g(c)=0$. In any case, we conclude that there exists $c \in[a, b]$ such that $f(c)=g(c)$.
22.9 Assume f is non-constant on $[a, b]$. Then there exists $x_{1}, x_{2} \in[a, b]$ such that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. In particular, this implies that $x_{1} \neq x_{2}$. By Theorem 12.14, there exists an irrational number k between $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$. Thus, by the intermediate value theorem, there exists c between x_{1} and x_{2} such that $f(c)=k$; this contradicts the assumption that $f([a, b]) \subseteq \mathbb{Q}$.
23.4 (a) Let $\varepsilon>0$. Take $\delta=\varepsilon / 12$. Then, for $x, y \in[0,2]$ with $|x-y|<\delta$, we have

$$
|f(x)-f(y)|=\left|x^{3}-y^{3}\right|=|x-y|\left|x^{2}+x y+y^{2}\right|<\delta\left|x^{2}+x y+y^{2}\right| \leq 12 \delta=\varepsilon .
$$

Here we used that $\left|x^{2}+x y+y^{2}\right| \leq 12$, by the triangle inequality, whenever $x, y \in[0,2]$.
(b) Let $\varepsilon>0$. Take $\delta=\varepsilon / 4$. Then, for $x, y \in[2, \infty)$ with $|x-y|<\delta$, we have

$$
|f(x)-f(y)|=\left|\frac{x-y}{x y}\right| \leq \frac{1}{4}|x-y|<\frac{1}{4} \delta=\varepsilon .
$$

