Select solutions to Homework #1

- 3.8 Suppose $f(x_1) = f(x_2)$. Then, by definition of f, $3x_1 5 = 3x_2 5$. Or, in other words, $3x_1 = 3x_2$, and thus $x_1 = x_2$. This verifies the contrapositive implication and hence the original implication as well.
- 4.16 Assume \sqrt{x} is rational. Then there exists integers p, q such that $\sqrt{x} = p/q$. Thus, $x = p^2/q^2$. Since p^2, q^2 are integers, it follows that x is also rational. This verifies the contrapositive implication and hence the original implication as well.
- 4.25 Let x > 0. As 2x > 0, we have

$$x^{2} + 1 < x^{2} + 2x + 1 = (x + 1)^{2}$$
.

Observe that $2x \le x^2 + 1$; this follows from the trivial bound $x^2 - 2x + 1 = (x - 1)^2 \ge 0$. Therefore, we obtain

$$(x+1)^2 = x^2 + 2x + 1 \le 2x^2 + 2,$$

and the proof of both inequalities is complete.

- 7.3 (a) $[2,\infty)$
 - (b) $[-3,\infty)$
 - (c) Since $x^2 + 6x + 4 = (x+3)^2 5$, the range of f is $[-5, \infty)$.
 - (d) [-3,3]