Select solutions to Homework \#1

3.8 Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then, by definition of $f, 3 x_{1}-5=3 x_{2}-5$. Or, in other words, $3 x_{1}=3 x_{2}$, and thus $x_{1}=x_{2}$. This verifies the contrapositive implication and hence the original implication as well.
4.16 Assume \sqrt{x} is rational. Then there exists integers p, q such that $\sqrt{x}=p / q$. Thus, $x=p^{2} / q^{2}$. Since p^{2}, q^{2} are integers, it follows that x is also rational. This verifies the contrapositive implication and hence the original implication as well.
4.25 Let $x>0$. As $2 x>0$, we have

$$
x^{2}+1<x^{2}+2 x+1=(x+1)^{2} .
$$

Observe that $2 x \leq x^{2}+1$; this follows from the trivial bound $x^{2}-2 x+1=(x-1)^{2} \geq 0$. Therefore, we obtain

$$
(x+1)^{2}=x^{2}+2 x+1 \leq 2 x^{2}+2
$$

and the proof of both inequalities is complete.
7.3 (a) $[2, \infty)$
(b) $[-3, \infty)$
(c) Since $x^{2}+6 x+4=(x+3)^{2}-5$, the range of f is $[-5, \infty)$.
(d) $[-3,3]$

