Practice Midterm

The following is a list of problems I consider midterm-worthy. This list of problems should serve as a good place to start studying, and it should not be considered a comprehensive list of problems from the sections we've covered. YOU are responsible for studying all the sections to be covered on the midterm.

- 1. Let R and S be relations on a set A. Prove or give a counterexample for each of the following.
 - (a) If R and S are reflexive, then $R \cap S$ is reflexive.
 - (b) If R and S are reflexive, then $R \cup S$ is reflexive.
 - (c) If R and S are symmetric, then $R \cap S$ is symmetric.
 - (d) If R and S are symmetric, then $R \cup S$ is symmetric.
 - (e) If R and S are transitive, then $R \cap S$ is transitive.
 - (f) If R and S are transitive, then $R \cup S$ is transitive.
- 2. Use induction to prove that $2+5+8+\cdots+(3n-1)=\frac{1}{2}n(3n+1)$ for all $n \in \mathbb{N}$.
- 3. Let $x \in \mathbb{R}$. Prove that $x = \sup\{q \in \mathbb{Q} : q < x\}$.
- 4. Let S be a subset of \mathbb{R} .
 - (a) Prove that $\operatorname{int} S$ is always open.
 - (b) If $T \subset S$ and T is open, prove that $T \subset \text{int } S$.
 - (c) Do S and \overline{S} always have the same interiors?
- 5. Define a relation R on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ by (a, b)R(x, y) iff ay = bx.
 - (a) Prove that R is an equivalence relation.
 - (b) Describe the equivalence classes corresponding to R.
- 6. Use induction to prove that if 1 + x > 0, then $(1 + x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.
- 7. Give an example of an open cover of (0, 1) which has no finite sub-cover.
- 8. Prove that every infinite set is equinumerous with a proper subset of itself.
- 9. Let S be the set of all $x \in [0, 1]$ whose decimal expansion contains only the digits 4 and 7. Is S countable? Is S compact?
- 10. Prove that the intersection of any collection of compact sets is compact.
- 11. Suppose that $g : A \to C$ and $h : B \to C$. Prove that if h is bijective, then there exists a function $f : A \to B$ such that $g = h \circ f$.
- 12. Use the definition of compactness to show that \mathbb{R} is not compact.