Practice Final

The following is a list of problems I consider final-worthy. This list of problems should serve as a good place to start studying, and it should not be considered a comprehensive list of problems from the sections we've covered. YOU are responsible for studying all the sections to be covered on the final.

1. Let $K \subset \mathbb{R}$ consist of 0 and the numbers $1 / n$, for $n=1,2, \ldots$ Prove that K is compact directly from the definition.
2. Suppose that $f:[a, b] \rightarrow[a, b]$ is continuous. Prove that f has a fixed point. That is, prove that there exists $c \in[a, b]$ such that $f(c)=c$.
3. Let $s_{n}=\sqrt{n^{2}+n}-n$. Calculate $\lim s_{n}$.
4. Let $\alpha>0$. Define $s_{1}=\sqrt{\alpha}$ and

$$
s_{n+1}=\sqrt{\alpha+\sqrt{s_{n}}}
$$

for $n \in \mathbb{N}$. Does $\left(s_{n}\right)$ converge? If so, what is the limit?
5. Let $C>0$ and let I be an interval. A function $f: I \rightarrow \mathbb{R}$ is called C-Lipschitz continuous on I if $|f(x)-f(y)| \leq C|x-y|$ for all $x, y \in I$. A function $f: I \rightarrow \mathbb{R}$ is called Lipschitz continuous on I if there exists $C>0$ such f is C-Lipschitz continuous on I.
(a) Show that every Lipschitz continuous function on I is uniformly continuous on I.
(b) Show that $\sin (x)$ is Lipschitz continuous on \mathbb{R}.
(c) Give an example of a Lipschitz continuous function on \mathbb{R} which is not differentiable on \mathbb{R}.
6. Suppose a and c are real numbers, $c>0$, and f is defined on $[-1,1]$ by

$$
f(x)= \begin{cases}x^{a} \sin \left(|x|^{-c}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Prove the following:
(a) f is continuous if and only if $a>0$.
(b) $f^{\prime}(0)$ exists if and only if $a>1$.
(c) f^{\prime} is bounded if and only if $a \geq 1+c$.
(d) f^{\prime} is continuous if and only if $a>1+c$.
(e) $f^{\prime \prime}(0)$ exists if and only if $a>2+c$.
7. Prove the mean value theorem for integrals: If f is continuous on $[a, b]$, then there exists $c \in(a, b)$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

8. Prove the inequality:

$$
\frac{x}{1+x} \leq \ln (1+x) \leq x \text { for all } x>-1
$$

9. For $x, y \in \mathbb{R}$, define

$$
\begin{aligned}
d_{1}(x, y) & =(x-y)^{2} \\
d_{2}(x, y) & =\sqrt{|x-y|} \\
d_{3}(x, y) & =\left|x^{2}-y^{2}\right| \\
d_{4}(x, y) & =|x-2 y| \\
d_{5}(x, y) & =\frac{|x-y|}{1+|x-y|}
\end{aligned}
$$

Determine, for each of these, whether it is a metric or not.
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in \mathbb{R}$. Show that f is constant.
11. Suppose f is continuos on $[a, b], f(x) \geq 0$ for all $x \in[a, b]$, and $\int_{a}^{b} f(x) d x=0$. Prove that $f(x)=0$ for all $x \in[a, b]$.
12. Evaluate $\lim _{x \rightarrow 0}(1 / x) \int_{0}^{x} \sqrt{9+t^{2}} d t$.
(Bonus) A real-valued function f defined in (a, b) is said to be convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

whenever $x, y \in(a, b)$ and $\lambda \in(0,1)$. Prove that every convex function is continuous.

