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1. • Compute the determinant of each of the following matrices:

(a) (10 points) A =


4 −1 1

−1 −2 0

0 1 0


SOLUTION:

Solution. We have det A = −1 The fastest way to see this may be to expand off of the third

column (or even to interchange two columns, twice); however, to use the standard method, we

have

det A = (4)[(−2)(0)− (0)(1)]− (−1)[(−1)(0)− (0)(0)] + (1)[(−1)(1)− (−2)(0)] = −1.

(b) (10 points) B =



0 1 0 0 0 π

1 0 e −4 8 3−5

0 0 0 1 0 0

0 5 1 0 2 104

0 0 0 3 0 1

0 0 0 −1 2 0


SOLUTION:

Solution. We have det B = −2 We use row operations:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 π

1 0 e −4 8 3−5

0 0 0 1 0 0

0 5 1 0 2 104

0 0 0 3 0 1

0 0 0 −1 2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 e −4 8 3−5

0 1 0 0 0 π

0 5 1 0 2 104

0 0 0 1 0 0

0 0 0 3 0 1

0 0 0 −1 2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 e −4 8 3−5

0 1 0 0 0 π

0 0 1 0 2 104 − 5π

0 0 0 1 0 0

0 0 0 3 0 1

0 0 0 −1 2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 e −4 8 3−5

0 1 0 0 0 π

0 0 1 0 2 104 − 5π

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 e −4 8 3−5

0 1 0 0 0 π

0 0 1 0 2 104 − 5π

0 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −2

1

20 points
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2. • Let V be a real vector space and let W1, W2 ⊆ V be two real subvector spaces of V. We define the

union W1 ∪W2 of W1 and W2 to be the collection of vectors in V that are in W1 or W2:

W1 ∪W2 := {v ∈ V : v ∈W1 or v ∈W2}.

We define the intersection W1 ∩W2 of W1 and W2 to be the collection of vectors in V that are in W1 and

W2:

W1 ∩W2 := {v ∈ V : v ∈W1 and v ∈W2}.

(a) (10 points) True or False: If W1, W2 ⊆ V are two real subvector spaces of a real vector space V, then the

union W1 ∪W2 is a real subvector space of V.

If true, provide a proof. If false, provide an example and prove that the example shows the

statement is false. Your solution must start with the sentence “This statement is TRUE” or “This

statement is FALSE”.

SOLUTION:

Proof. This statement is FALSE. For example, let V = R2, let W1 = {(x1, 0) ∈ R2} be the x1-axis

and let W2 = {(0, x2) ∈ R2} be the x2-axis. The lines W1 and W2 are both real subvector spaces of

R2, but the union W1 ∪W2 of the two lines is not a real subvector space of R2 since (1, 0) ∈W1 ∪W2

(since (1, 0) ∈ W1) and (0, 1) ∈ W1 ∪W2 (since (0, 1) ∈ W2), but the vector (1, 0) + (0, 1) = (1, 1) is

not in W1 ∪W2 since it is in neither W1 nor W2.
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(b) (10 points) True or False: If W1, W2 ⊆ V are two real subvector spaces of a real vector space V, then the

intersection W1 ∩W2 is a real subvector space of V.

If true, provide a proof. If false, provide an example and prove that the example shows the

statement is false. Your solution must start with the sentence “This statement is TRUE” or “This

statement is FALSE”.

SOLUTION:

Proof. This statement is TRUE. We must show that W1∩W2 is non-empty, and closed under addition

and scaling. We have 0 ∈ W1 ∩W2 since 0 ∈ W1 and 0 ∈ W2, so W1 ∩W2 is not empty. Now, if

u, v ∈ W1 ∩W2, then we have u + v ∈ W1 ∩W2 since u + v ∈ W1 and u + v ∈ W2 (W1 and W2 are

closed under addition). Therefore W1 ∩W2 is closed under addition. If v ∈ W1 ∩W2 and λ ∈ R,

then λv ∈ W1 ∩W2 since λv ∈ W1 and λv in W2 (W1 and W2 are closed under scaling). Therefore,

W1 ∩W2 is closed under scaling.

2

20 points
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3. (20 points) • Let {v1, v2, v3} and {w1, w2, w3} be bases for a real vector space V, and suppose that

v1 = 4w1 − w2 + w3

v2 = 3w1 + 2w2 − w3

v3 = 7w1 + 23w2 − 2w3

Find the change-of-coordinates matrix to go from the coordinates with respect to the basis {v1, v2, v3} to the

coordinates with respect to the basis {w1, w2, w3}.

SOLUTION:

Solution. The change-of-coordinates matrix to go from the coordinates with respect to the basis {v1, v2, v3}

to the coordinates with respect to the basis {w1, w2, w3}can be read off from the equations above as the

matrix 
4 −1 1

3 2 −1

7 23 −2


T

=


4 3 7

−1 2 23

1 −1 −2

 .

3

20 points
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4. (20 points) • Find a basis for the solution space of the difference equation

yk+2 + yk+1 − 56yk = 0.

SOLUTION:

Solution. A basis for the solution space of the difference equation yk+2 + yk+1 − 56yk = 0 is given by

the sequences

{yk} = {(−8)k} and {yk} = {7k} .

To find this we consider the auxiliary equation

z2 + z− 56 = 0.

Since this factors as z2 + z− 56 = (z+ 8)(z− 7) = 0, we see that the solutions are z = −8 and z = 7. We

have seen in class, and in the book, that since this is a degree 2 difference equation, with two distinct

solutions to the auxiliary equation, that {yk} = {(−8)k} and {yk} = {7k} form a basis for the solution

space.

4

20 points
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5. • Consider the following real matrix

A =


2 −1 1

0 3 −1

2 1 3


(a) (5 points) Find the characteristic polynomial pA(t) of A.

SOLUTION:

Solution. We have

pA(t) =

∣∣∣∣∣∣∣∣∣∣
t− 2 1 −1

0 t− 3 1

−2 −1 t− 3

∣∣∣∣∣∣∣∣∣∣
= (t− 2)[(t− 3)2 − (1)(−1)]− (1)[0− (1)(−2)] + (−1)[0− (t− 3)(−2)]

= (t− 2)[t2 − 6t + 10]− 2 + (t− 3)(−2)︸ ︷︷ ︸
−2t+6

= (t3 − 6tt + 10t− 2t2 + 12t− 20)− 2 + (6− 2t)

= t3 − 8t2 + 20t− 16.

In other words, the solution is:

pA(t) = t3 − 8t2 + 20t− 16.

As a quick partial check of the solution, observe that

tr(A) = 8

det A =

∣∣∣∣∣∣∣∣∣∣
2 −1 1

0 3 −1

2 1 3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
2 −1 1

0 3 −1

0 2 2

∣∣∣∣∣∣∣∣∣∣
= 2(6 + 2) = 16.
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confirming the computation of the coefficients of t2 and t0, since we know that

pA(t) = t3 − tr(A)t2 + αt + (−1)3 det(A)

for some real number α ∈ R.

(b) (5 points) Find the eigenvalues of A.

SOLUTION:

Solution. One can easily check that

pA(2) = 23 − 8 · 22 + 20 · 2− 16 = 8− 32 + 40− 16 = 48− 48 = 0.

Thus (t− 2) is a factor of pA(t), so that we have

pA(t) = (t− 2)(t2 − 6t + 8) = (t− 2)(t− 2)(t− 4).

Thus the eigenvalues are

λ = 2, 4.
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(c) (5 points) Find a basis for each eigenspace of A in R3.

SOLUTION:

Solution. To find a basis for the λ = 2 eigenspace E2, we compute

E2 := ker(2I − A) = ker


0 1 −1

0 −1 1

−2 −1 −1



= ker


2 1 1

0 1 −1

0 −1 1

 = ker


2 1 1

0 1 −1

0 0 0

 = ker


2 0 2

0 1 −1

0 0 0



= ker


1 0 1

0 1 −1

0 0 0


We add rows, and get the matrix 

1 0 1

0 1 −1

0 0 −1


Thus we have

E2 =

α


1

−1

−1

 : α ∈ R


Now we compute a basis for the λ = 4 eigenspace E4. We have

E4 = ker


2 1 −1

0 1 1

−2 −1 1

 = ker


2 1 −1

0 1 1

0 0 0

 = ker


2 0 −2

0 1 1

0 0 0



= ker


1 0 −1

0 1 1

0 0 0


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This gives us the matrix 
1 0 −1

0 1 1

0 0 −1


Thus we have

E4 =

α


−1

1

−1

 : α ∈ R


Thus the solution to the problem is:

The eigenspaces for A are E2 and E4, and we have that


1

−1

−1

 is a basis for E2 and


−1

1

−1


is a basis for E4.
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(d) (5 points) Is A diagonalizable? If so, find a matrix S ∈ M3×3(R) so that S−1 AS is diagonal. If not,

explain.

SOLUTION:

Solution. No. A is not diagonalizable since we showed in part (c) that there does not exists a

basis of R3 consisting of eigenvectors for A.

5

20 points
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