Final Exam

Linear Algebra: Matrix Methods MATH 2130 Fall 2025

Tuesday December 9, 2025

UPLOAD THIS COVER SHEET!

NAME:			
INAME			

PRACTICE EXAM SOLUTIONS

Question:	1	2	3	4	5	6	Total
Points:	20	20	20	20	10	10	100
Score:							

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 70 minutes to complete the exam.

1. (20 points) • Let
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{x}_4 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$.

Use the Gram-Schmidt process to find an orthonormal basis for the vector subspace of \mathbb{R}^4 spanned by the vectors \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , and \mathbf{x}_4 .

SOLUTION:

Solution. An orthonormal basis is given by

$$\mathbf{u}_{1} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \quad \mathbf{u}_{2} = \frac{1}{\sqrt{15}} \begin{bmatrix} -1\\2\\3\\-1 \end{bmatrix}, \quad \mathbf{u}_{3} = \frac{1}{\sqrt{35}} \begin{bmatrix} 1\\3\\-3\\-4 \end{bmatrix}$$

We start by finding an orthogonal basis. We have

$$\mathbf{v}_1 = \mathbf{x}_1 = \left[egin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array}
ight]$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/3 \\ 2/3 \\ 1 \\ -1/3 \end{bmatrix} \sim \begin{bmatrix} -1 \\ 2 \\ 3 \\ -1 \end{bmatrix}$$

For simplicity, we will take

$$\mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \\ 3 \\ -1 \end{bmatrix}$$

We have

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} - \frac{2}{15} \begin{bmatrix} -1 \\ 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$=\frac{1}{15}\begin{bmatrix}0\\0\\15\\15\end{bmatrix}+\frac{1}{15}\begin{bmatrix}-5\\-5\\0\\-5\end{bmatrix}+\frac{1}{15}\begin{bmatrix}2\\-4\\-6\\2\end{bmatrix}=\frac{1}{15}\begin{bmatrix}-3\\-9\\9\\12\end{bmatrix}\sim\begin{bmatrix}1\\3\\-3\\-4\end{bmatrix}$$

Again for simplicity we take

$$\mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 3 \\ -3 \\ -4 \end{array} \right]$$

Note that since $\mathbf{x}_4 = \mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3$, we see that \mathbf{x}_4 is in the span of \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , so if we perform Gram–Schmidt to \mathbf{x}_4 , we will get $\mathbf{v}_4 = 0$. I omit the computation here for brevity (but you should check!).

Therefore, an orthogonal basis for the span of x_1, \ldots, x_4 is given by

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \\ 3 \\ -1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 3 \\ -3 \\ -4 \end{bmatrix}$$

Consequently, an orthonormal basis is given by

$$\mathbf{u}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \quad \mathbf{u}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} = \frac{1}{\sqrt{15}} \begin{bmatrix} -1\\2\\3\\-1 \end{bmatrix}, \quad \mathbf{u}_{3} = \frac{\mathbf{v}_{3}}{\|\mathbf{v}_{3}\|} = \frac{1}{\sqrt{35}} \begin{bmatrix} 1\\3\\-3\\-4 \end{bmatrix}$$

2. (20 points) • For the vectors x_1 , x_2 , x_3 , and x_4 of the previous problem, find the vector in the span of

those vectors that is closest to the vector
$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 .

SOLUTION:

Solution. The closest vector to \mathbf{v} in the span of \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , and \mathbf{x}_4 is the orthogonal projection of \mathbf{v} onto the span of \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , and \mathbf{x}_4 , which is the vector

$$\frac{1}{7} \begin{bmatrix} 5 \\ 8 \\ 6 \\ 8 \end{bmatrix}.$$

Here is how to find the orthogonal projection. In the previous problem, we computed an orthonormal basis for the span of x_1 , x_2 , x_3 , and x_4 to be:

$$\mathbf{u}_1 = rac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = rac{1}{\sqrt{15}} \begin{bmatrix} -1 \\ 2 \\ 3 \\ -1 \end{bmatrix}, \quad \mathbf{u}_3 = rac{1}{\sqrt{35}} \begin{bmatrix} 1 \\ 3 \\ -3 \\ -4 \end{bmatrix}.$$

The orthogonal projection of v onto the span of x_1 , x_2 , x_3 , and x_4 is then given by

$$(\mathbf{v}.\mathbf{u}_1)\mathbf{u}_1 + (\mathbf{v}.\mathbf{u}_2)\mathbf{u}_2 + (\mathbf{v}.\mathbf{u}_3)\mathbf{u}_3$$

$$= \begin{pmatrix} \frac{1}{3} \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \frac{1}{15} \begin{pmatrix} 3 \end{pmatrix} \begin{bmatrix} -1 \\ 2 \\ 3 \\ -1 \end{bmatrix} + \frac{1}{35} \begin{pmatrix} -3 \end{pmatrix} \begin{bmatrix} 1 \\ 3 \\ -3 \\ -4 \end{bmatrix}$$

$$= \frac{35}{35} \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix} + \frac{7}{35} \begin{bmatrix} -1\\2\\3\\-1 \end{bmatrix} - \frac{3}{35} \begin{bmatrix} 1\\3\\-3\\-4 \end{bmatrix} = \frac{1}{35} \begin{bmatrix} 25\\40\\30\\40 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 5\\8\\6\\8 \end{bmatrix}$$

Total for Question 2: 20

3. (20 points) • Find the equation $y = \beta_0 + \beta_1 x$ of the line that best fits the given data points, as a least squares model:

$$\left[\begin{array}{c} x \\ y \end{array}\right] : \left[\begin{array}{c} -1 \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ 1 \end{array}\right], \left[\begin{array}{c} 1 \\ 2 \end{array}\right], \left[\begin{array}{c} 2 \\ 1 \end{array}\right]$$

SOLUTION:

Solution. The best fit line is

$$y = \frac{4}{5} + \frac{2}{5}x$$

To find this, we have the matrices:

$$\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \quad \widetilde{\mathbf{x}} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}.$$

The best fit line is given by β satisfying

$$\widetilde{\mathbf{x}}^T\widetilde{\mathbf{x}}\boldsymbol{\beta} = \widetilde{\mathbf{x}}^T\mathbf{y}.$$

In other words, we are trying to solve

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}$$

$$\left[\begin{array}{cc} 4 & 2 \\ 2 & 6 \end{array}\right] \left[\begin{array}{c} \beta_0 \\ \beta_1 \end{array}\right] = \left[\begin{array}{c} 4 \\ 4 \end{array}\right].$$

In other words,

$$\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 6 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 16 \\ 8 \end{bmatrix} = \begin{bmatrix} 4/5 \\ 2/5 \end{bmatrix}$$

Total for Question 3: 20		

4. • Consider the following real matrix

$$A = \left(\begin{array}{rrr} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{array}\right)$$

(a) (5 points) Find the characteristic polynomial $p_A(t)$ of A.

SOLUTION:

Solution to (a). The characteristic polynomial of *A* is:

$$p_A(t) = \det(tI - A) = t^3 - 11t^2 + 36t - 36$$

If you used the textbook's convention, you will get $p_A(t) = \det(A - tI) = 36 - 36t + 11t^2 - t^3$; that is also fine.

Here is the computation.

$$\det(tI - A) = \begin{vmatrix} t - 3 & +1 & -1 \\ +1 & t - 5 & +1 \\ -1 & +1 & t - 3 \end{vmatrix}$$

$$= (t-3)[(t-5)(t-3) - (1)(1)] - (1)[(t-3) - (1)(-1)] + (-1)[(1)(1) - (t-5)(-1)]$$

$$= (t-3)[t^2 - 8t + 15 - 1] - [t-3+1] - [1+t-5]$$

$$= (t-3)[t^2 - 8t + 14] - [t-2] - [t-4]$$

$$= [t^3 - 8t^2 + 14t - 3t^2 + 24t - 42] - 2t + 6$$

$$= t^3 - 11t^2 + 36t - 36$$

(b) (5 points) Find the eigenvalues of A.

SOLUTION:

Solution to (b). The eigenvalues of *A* are

$$\lambda = 6, 3, 2$$

The computation is as follows. By trying, $0, \pm 1, \pm 2$, we see that $p_A(2) = 0$. Thus we have

$$p_A(t) = t^3 - 11t^2 + 36t - 36$$
$$= (t - 2)(t^2 - 9t + 18)$$
$$= (t - 2)(t - 3)(t - 6)$$

Therefore, the real roots of $p_A(t)$ are $\lambda = 6,3,2$.

(c) (5 points) Find a basis for each eigenspace of A in \mathbb{R}^3 .

SOLUTION:

Solution to (c). A basis for each eigenspace is:

$$E_{6} \leftrightarrow \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}, E_{3} \leftrightarrow \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}, E_{2} \leftrightarrow \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$

The computation is as follows. We start with E_6 . We want to find a basis for the kernel of

$$6I - A = \left[\begin{array}{rrr} 3 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 3 \end{array} \right]$$

We put the matrix in reduced row echelon form:

$$\begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 3 \\ 3 & 1 & -1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & -2 & -4 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

We then modify the matrix:

$$\begin{bmatrix}
 1 & 0 & -1 \\
 0 & 1 & 2 \\
 0 & 0 & -1
 \end{bmatrix}$$

The last column, with the new red -1, gives the basis element we want.

Next we consider E_3 . We want to find a basis for the kernel of

$$3I - A = \left[\begin{array}{rrr} 0 & 1 & -1 \\ 1 & -2 & 1 \\ -1 & 1 & 0 \end{array} \right]$$

We put the matrix in reduced row echelon form:

$$\begin{bmatrix} 0 & 1 & -1 \\ 1 & -2 & 1 \\ -1 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & -2 & 1 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

We then modify the matrix:

$$\begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & -1
\end{bmatrix}$$

The last column, with the new red -1, gives the basis element we want.

Finally we consider E_2 . We want to find a basis for the kernel of

$$2I - A = \begin{bmatrix} -1 & 1 & -1 \\ 1 & -3 & 1 \\ -1 & 1 & -1 \end{bmatrix}$$

We put the matrix in reduced row echelon form:

$$\begin{bmatrix} -1 & 1 & -1 \\ 1 & -3 & 1 \\ -1 & 1 & -1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & -1 & 1 \\ 1 & -3 & 1 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & -1 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

We then modify the matrix:

$$\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]$$

The last column, with the new red -1, gives the basis element we want.

(d) (5 points) Is A diagonalizable? If so, find a matrix $S \in M_{3\times 3}(\mathbb{R})$ so that $S^{-1}AS$ is diagonal. If not, explain.

SOLUTION:

Solution to (d). Yes, A is diagonalizable. We can use the matrix with columns given by the basis elements for the eigenspaces that we just computed. In other words, we may take

$$S = \begin{bmatrix} -1 & -1 & 1 \\ 2 & -1 & 0 \\ -1 & -1 & -1 \end{bmatrix}.$$

Total for Question 4: 20

5. • Consider the 2-dimensional discrete dynamical system

$$\mathbf{x}_{k+1} = A\mathbf{x}_k$$

where

$$A = \left(\begin{array}{cc} 1.7 & 0.3 \\ 1.2 & 0.8 \end{array} \right)$$

(a) (5 points) Is the origin an attractor, repeller, or saddle point?

SOLUTION:

Solution. The origin is a saddle point.

To see this, we compute that the characteristic polynomial is

$$p_A(t) = \det \begin{pmatrix} t - 1.7 & -0.3 \\ -1.2 & t - 0.8 \end{pmatrix} = (t^2 - 2.5t + 1.36) - (.36) = t^2 - 2.5t + 1$$

$$= (t-2)(t-\frac{1}{2})$$

Thus the eigenvalues are $\lambda = \frac{1}{2}$, 2. Since $0 < \frac{1}{2} < 1$ and 1 < 2, we see that the origin is a saddle point.

(b) (5 points) Find the directions of greatest attraction or repulsion.

SOLUTION:

Solution. We have that the line spanned by $\begin{pmatrix} 1 \\ -4 \end{pmatrix}$ is the direction of greatest attraction, and

$$\begin{pmatrix} 1 \\ -4 \end{pmatrix}$$

is the direction of greatest repulsion.

To deduce this, we find the eigenspaces. We start with the $\lambda = \frac{1}{2}$ -eigenspace, $E_{1/2}$, which is the

kernel of $\frac{1}{2}I - A$:

$$\frac{1}{2}I - A = \begin{pmatrix} -1.2 & -0.3 \\ -1.2 & -0.3 \end{pmatrix} \mapsto \begin{pmatrix} 12 & 3 \\ 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1/4 \\ 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1/4 \\ 0 & -1 \end{pmatrix}$$

Thus $\begin{pmatrix} 1 \\ -4 \end{pmatrix}$ is a basis for the $\frac{1}{2}$ -eigenspace $E_{1/2}$.

We now compute the $\lambda = 2$ -eigenspace, E_2 , which is the kernel of 2I - A:

$$2I - A = \begin{pmatrix} 0.3 & -0.3 \\ -1.2 & 1.2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$$

Thus $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is a basis for the 2-eigenspace E_2 .

In conclusion, the line spanned by $\begin{pmatrix} 1 \\ -4 \end{pmatrix}$ is the direction of greatest attraction, and the line

spanned by $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is the direction of greatest repulsion. \Box

Total for Question 5: 10

- 6. TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
 - (a) (2 points) **TRUE** or **FALSE** (circle one). If $x, y \in \mathbb{R}^n$, then $|x.y| \leq ||x|| ||y||$.

SOLUTION: TRUE: This is Cauchy–Schwarz.

(b) (2 points) **TRUE** or **FALSE** (circle one). Two vectors in \mathbb{R}^n are orthogonal if their dot product is zero.

SOLUTION: TRUE: This was our definition of orthogonal.

(c) (2 points) **TRUE** or **FALSE** (circle one). If $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, then a least squares solution to the equation $A\mathbf{x} = \mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

SOLUTION: TRUE: We showed this in class – this is Theorem 13, p.383 of Lay.

(d) (2 points) **TRUE** or **FALSE** (circle one). If A is any real matrix, then the matrix $A^{T}A$ has non-negative eigenvalues.

SOLUTION: TRUE: Considering an eigenvector \mathbf{x} for A^TA with eigenvalue λ , one has $0 \le \|A\mathbf{x}\|^2 = (A\mathbf{x})^T(A\mathbf{x}) = \mathbf{x}^TA^TA\mathbf{x} = \mathbf{x}^T\lambda\mathbf{x} = \lambda\|\mathbf{x}\|^2$. Dividing by $\|\mathbf{x}\|^2 > 0$ gives the assertion.

(e) (2 points) **TRUE** or **FALSE** (circle one). Given symmetric matrices A and B of the same size, i.e., $A = A^T$ and $B = B^T$, then AB is a symmetric matrix, i.e., $AB = (AB)^T$.

SOLUTION: FALSE: For instance, $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$.

Total for Question 6: 10