Exercise 5.4.25

Linear Algebra
MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 5.4.25 from Lay [LLM16, §5.4]:

Exercise 5.4.25. The trace of a square matrix A is the sum of the diagonal entries in A and is
denoted by tr A. It can be verified (see below) that tr(FG) = tr(GF) for any two n X n matrices F

and G. Show that if A and B are similar, then tr A = tr B.

Solution. Suppose that A and B are similar. Then there exists an invertible matrix S such that

B = S 1 AS. We then have

tr(B) = tr(S'AS) = tr(S}(AS)) = tr((AS)S™1) = tr(A).

Remark 0.1. We can prove tr(FG) = tr(GF) as follows.
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Remark 0.2. Another way to prove tr A = tr B is through the characteristic polynomial. If two

matrices A and B are similar, then p(t) = pg(t), since if B = S~1AS, we have
pa(t) = det(t] — A) = det(S~(tI — A)S) = det(t] — S™1AS) = det(t] — B) = pp(t).

We also know that p(t) = t" —tr(A)t" 1 +-- -+ (—1)" det(A), so that the equality p4(t) = pg(t)
implies that tr(A) = tr(B).
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