Exercise 6.4.23

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 6.4.23 from Lay [LLM21, §6.4]:

Exercise 6.4.23. Suppose A = QR, where Q is $m \times n$ and R is $n \times n$. Show that if the columns of A are linearly independent, then R must be invertible.

Solution. The columns of A are linearly independent if and only if $\ker(A) = \{0\}$. It follows that $\ker(R) = \{0\}$, since if $\mathbf{x} \in \ker(R)$, then $A\mathbf{x} = QR\mathbf{x} = Q\mathbf{0} = \mathbf{0}$, so that $\mathbf{x} \in \ker(A) = \{0\}$. A square matrix is invertible if and only if its kernel is trivial; therefore R is invertible.

Date: November 30, 2025.

REFERENCES

[LLM21] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Sixth edition, Pearson, 2021.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309 Email address: casa@math.colorado.edu