### Exercise 1.7.2

# Linear Algebra MATH 2130

#### SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 1.7.2 from Lay [LLM21, §1.7]:

### **Exercise 1.7.2.** Determine if the following vectors are linearly independent:

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 5 \\ -8 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix},$$

Solution. The vectors  $\mathbf{v}_1$ ,  $\mathbf{v}_2$ , and  $\mathbf{v}_3$  are linearly independent. Indeed, by definition, they are linearly independent if and only if we have that for all  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3 \in \mathbb{R}$ , if  $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = 0$ , then  $\alpha_1 = \alpha_2 = \alpha_3 = 0$ . This is equivalent to asking that that matrix equation

$$\begin{bmatrix} 0 & 0 & -3 \\ 0 & 5 & 4 \\ 2 & -8 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

have as its only solution the vector

$$\left[\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right].$$

But this is true, since we have

$$RREF\left(\begin{bmatrix} 0 & 0 & -3 \\ 0 & 5 & 4 \\ 2 & -8 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

*Remark* 0.1. Alternatively, we have seen that the rows of a matrix A are linearly independent if and only if there are no non-zero rows in RREF(A). Therefore, we could consider the matrix with

rows given by 
$$\mathbf{v}_1$$
,  $\mathbf{v}_2$ , and  $\mathbf{v}_3$ , namely  $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 5 & -8 \\ -3 & 4 & 1 \end{bmatrix}$ , and then check that

$$RREF\left(\left[\begin{array}{ccc} 0 & 0 & 2 \\ 0 & 5 & -8 \\ -3 & 4 & 1 \end{array}\right]\right) = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right].$$

Since this has no non-zero rows, we can conclude that  $\mathbf{v}_1$ ,  $\mathbf{v}_2$ , and  $\mathbf{v}_3$  are linearly independent.

## REFERENCES

[LLM21] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Sixth edition, Pearson, 2021.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309 Email address: casa@math.colorado.edu