Final Exam

Intro to Discrete Math MATH 2001

Fall 2024

Sunday December 15, 2024

NAME: ____

PRACTICE EXAM SOLUTIONS

Question:	1	2	3	4	5	6	Total
Points:	20	20	20	20	20	20	120
Score:							

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 60 minutes to complete the exam.

1. (20 points) • The Fibonacci sequence F_1 , F_2 , F_3 ,... is defined by the rule that $F_1 = 1$, $F_2 = 1$, and for $n \ge 3$, one sets $F_n = F_{n-1} + F_{n-2}$. In other words, the Fibonacci sequence begins:

Give a *proof by induction* that for each natural number *n* the following statement is true:

$$\sum_{i=1}^n F_i^2 = F_n F_{n+1}.$$

SOLUTION:

Solution. For each natural number *n* we have the statement:

$$p(n): \sum_{i=1}^{n} F_i^2 = F_n F_{n+1}.$$

We start by proving $p(1) : \sum_{i=1}^{1} F_i^2 = F_1F_{1+1}$. In other words, we must prove that $F_1^2 = F_1F_2$. Writing this out we have $F_1^2 = 1^2 = 1 \cdot 1 = F_1F_2$, confirming that p(1) is true. Now we assume that for some $n \ge 1$ and all $m \le n$ we have proven that p(m) is true. We then must prove that the statement p(n+1) is true:

$$\sum_{i=1}^{n+1} F_i^2 = F_{n+1}F_{(n+1)+1} = F_{n+1}F_{n+2}.$$

To establish this we make the following computation

$$\sum_{i=1}^{n+1} F_i^2 = \sum_{i=1}^n F_i^2 + F_{n+1}^2 = F_n F_{n+1} + F_{n+1}^2 = F_{n+1}(F_n + F_{n+1}) = F_{n+1}F_{n+2}$$

where, for the second equality, we are using the inductive hypothesis that p(n) is true. This completes the proof.

Total for Question 1: 20

2. (20 points) • TRUE or FALSE:

If R and S are equivalence relations on a set A, then $R \subseteq S$ *if and only if for all* $X \in A/R$ *there exists* $Y \in A/S$ *with* $X \subseteq Y$.

If true, give a *proof* of the statement. If false, provide a *counter example*, and prove that it is a counter example. Your solution must start with the sentence, *"This statement is TRUE,"* or the sentence, *"This statement is FALSE."*

Recall that A/R is the set of equivalence classes for the equivalence relation R, and A/S is the set of equivalence classes for the equivalence relation S.

SOLUTION:

Solution. This statement is TRUE.

First assume that $R \subseteq S$, and let $X \in A/R$. We want to show that there exists $Y \in A/S$ such that $X \subseteq Y$. As $X \in A/R$, by definition we have that there exists $a \in A$ such that X is the equivalence class of a for R; i.e., $X = [a]_R = \{x \in A : x \sim_R a\} = \{x \in A : (x, a) \in R\}$. We can then see that

$$X = [a]_R = \{x \in A : (x, a) \in R\} \subseteq \{x \in A : (x, a) \in S\} = [a]_S \in A/S,$$

using that $R \subseteq S$. Taking the equivalence class $Y = [a]_S \in A/S$, this completes the proof that there exists $Y \in A/S$ with $X \subseteq Y$.

Conversely, assume that for all $X \in A/R$ there exists $Y \in A/S$ with $X \subseteq Y$. We want to show that $R \subseteq S$. So let $(a, b) \in R$. We have the equivalence class $[a]_R \in A/R$, and we have by assumption that there exists $Y \in A/S$ such that $[a]_R \subseteq Y$. Since we are assuming that $a \sim_R b$ (i.e., $(a, b) \in R$), we have $a, b \in [a]_R \subseteq Y$, so that $a, b \in Y$. By definition, there exists $c \in A$ such that $[Y] = [c]_S = \{x \in A : x \sim_S c\}$. Thus we have $a \sim_S c$ and $b \sim_S c$, so that $a \sim_S b$, by symmetry and transitivity. In other words, $(a, b) \in S$, completing the proof.

Total for Question 2: 20

- 3. Answer the following questions about maps of sets.
 - (a) (4 points) Write down all the maps (functions) of sets $f : \{1,2\} \rightarrow \{1,2\}$ by listing the values of f(1) and f(2).

1.
$$f(1) = f(2) = 2$$
. $f(1) = f(2) = 3$. $f(1) = f(2) = 4$. $f(1) = f(2) = 6$

SOLUTION:

Solution. 1. f(1) = 1 f(2) = 1 2. f(1) = 1 f(2) = 2 3. f(1) = 2 f(2) = 14. f(1) = 2 f(2) = 2

(b) (2 points) Circle the maps above that are injective.

SOLUTION:

Solution. The maps 2. and 3. above are injective.

(c) (2 points) Are there any maps above that are injective but not surjective?

SOLUTION:

Solution. No, all the injective maps are surjective.

(d) (5 points) *How many injective maps of sets* $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ *are there?* Explain.

SOLUTION:

Solution. As we saw in class, a map of sets $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ is the same as an ordered list $a_1, a_2, ..., a_n$ of n elements (with repitition allowed) taken from the set $\{1, ..., n\}$; i.e., we have $f(k) = a_k$ for $k \in \{1, ..., n\}$. For an injective map, we cannot have repetition, so there are n options for $a_1, n - 1$ options for a_2 , and so on. This gives n! injective maps.

(e) (2 points) How many bijective maps of sets $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ are there? Explain.

SOLUTION:

Solution. There are *n*! bijective maps of sets $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$, as every such injective map is surjective. Indeed, given a map $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ determined by an ordered list $a_1, ..., a_n$ (with repetition allowed), the image of f is the set $\{a_1, ..., a_n\}$. If f is injective, i.e., the list is without repetition, then the image $\{a_1, ..., a_n\} \subseteq \{1, ..., n\}$ must have n elements, and so the image is equal to $\{1, ..., n\}$, implying that f is surjective.

(f) (5 points) If A and B are finite sets, how many bijective maps of sets $f : A \to B$ are there? Explain.

SOLUTION:

Solution. As we saw in class, if |A| > |B|, then there are no injective maps $f : A \to B$, by the Division Principle. Indeed, if |A| = n > m = |B|, and a map $f : A \to B$ is given by the ordered list a_1, \ldots, a_n of n elements of B, then, by the Division Principle, there must be some $i, j \in \{1, \ldots, n\}$, $i \neq j$, such that $a_i = a_j$. In other words, we must have f(i) = f(j) for some $i \neq j$. Thus, if |A| > |B|, there are no bijective maps $f : A \to B$.

If |A| < |B|, then there are no surjective maps $f : A \to B$. Indeed, if |A| = n < m = |B|, and $f : A \to B$ is given by the ordered list a_1, \ldots, a_n of n elements of B (with repetition allowed), then the image of f is $\{a_1, \ldots, a_n\} \subseteq B$. The set $\{a_1, \ldots, a_n\}$ has at most n elements, while B has m > n elements. Therefore the image of f cannot be equal to B, so that f is not surjective. One could also have concluded using the Pigeonhole Principle. Thus, if |A| < |B|, there are no bijective maps $f : A \to B$.

If |A| = |B| = n, then there are *n*! bijective maps $f : A \to B$, using the argument in the previous part of this problem.

Total for Question 3: 20

- **4.** Consider the set $\Gamma = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + 4x y = -4\}$, and the function $g : \mathbb{R} \to \mathbb{R}$ defined as $g(x) = x \sin(x)$.
 - (a) (5 points) Show that Γ defines a map (function) $f : \mathbb{R} \to \mathbb{R}$?

SOLUTION:

Solution. We have $\Gamma = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x^2 + 4x - y\} = \{(x,y) \in \mathbb{R} \times \mathbb{R} : y = x^2 + 4x + 4\}.$ Therefore, if $x \in \mathbb{R}$, then $(x, x^2 + 4x + 4) \in \Gamma$. In addition, if $(x, y_1), (x, y_2) \in \Gamma$, then $y_1 = x^2 + 4x + 4 = y_2$. Thus Γ defines a function $f : \mathbb{R} \to \mathbb{R}$.

(b) (1 point) What is f(1)?

SOLUTION:

Solution. We have
$$(1, 1^2 + 4 \cdot 1 + 4) \in \Gamma$$
, so that $f(1) = 9$.

(c) (1 point) Write a formula for f(x).

SOLUTION:

Solution. We have
$$f(x) = x^2 + 4x + 4 = (x + 2)^2$$
.

(d) (1 point) What is the source (domain) of f?

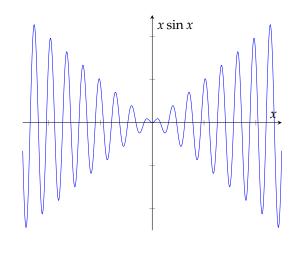
SOLUTION:

Solution. The source of f is \mathbb{R} .

(e) (3 points) What is the image of g?

SOLUTION:

Solution. The image of *g* is \mathbb{R} . This is clear from the graph of $g(x) = x \sin x$. For this short problem, drawing the graph would be sufficient explanation:



Here is how to show carefully that $g(\mathbb{R}) = \mathbb{R}$. First we have that g(0) = 0. Then, given any $y \in \mathbb{R}$, suppose first that y is positive. Then let n be any natural number such that $\pi/2 + 2\pi n > y$. For brevity, set $r = \pi/2 + 2\pi n$. We have $g(r) = r \sin(r) = r > y > 0$. Since g is differentiable (it is the product of differentiable functions) it is continuous. Therefore, by the Intermediate Value Theorem, there is some number a in the interval [0, r] such that g(a) = y. On the other hand, if y is negative, let n be any natural number such that $-\pi/2 + 2\pi n > -y$. For brevity, set $r = -\pi/2 + 2\pi n$. We have $g(r) = r \sin(r) = -r < y < 0$. Therefore, by the Intermediate Value Theorem, there is some number a in the interval [0, r] such that g(a) = y.

Note for later that we have actually shown the stronger statement that $g(\mathbb{R}_{\geq 0}) = \mathbb{R}$, where $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} : x \geq 0\}$.

(f) (2 points) *Write formulas for* $g \circ f$ *and* $f \circ g$.

SOLUTION:

Solution. We have $f(x) = (x + 2)^2$ and $g(x) = x \sin x$, so that

$$(f \circ g)(x) = f(g(x)) = ((x \sin x) + 2)^2$$
, and $(g \circ f)(x) = g(f(x)) = (x + 2)^2 \sin((x + 2)^2)$.

(g) (1 point) Find $(g \circ f)(1)$.

SOLUTION:

Solution.
$$(g \circ f)(1) = (1+2)^2 \sin(1+2)^2 = 9 \sin 9.$$

(h) (2 points) Find $(f \circ g)^{-1}(\{4\}) \cap \{x \in \mathbb{R} : g(x) \ge 0\}.$

SOLUTION:

Solution. $(f \circ g)^{-1}(\{4\}) \cap \{x \in \mathbb{R} : g(x) \ge 0\} = \{n\pi : n \in \mathbb{Z}\}$. To see this, recall that we have $(f \circ g)(x) = f(g(x)) = ((x \sin x) + 2)^2$, so that

$$(f \circ g)^{-1}(\{4\}) = \{x \in \mathbb{R} : (f \circ g)(x) = 4\} = \{x \in \mathbb{R} : ((x \sin x) + 2)^2 = 4\}$$
$$= \{x \in \mathbb{R} : (x \sin x) + 2 = \pm 2\} = \{x \in \mathbb{R} : x \sin x = -2 \pm 2\}$$
$$= \{x \in \mathbb{R} : x \sin x = 0\} \cup \{x \in \mathbb{R} : x \sin x = -4\}$$

Therefore,

$$(f \circ g)^{-1}(\{4\}) \cap \{x \in \mathbb{R} : g(x) = x \sin x \ge 0\} = \{x \in \mathbb{R} : x \sin x = 0\} = \{n\pi : n \in \mathbb{Z}\}.$$

(i) (2 points) Is $f \circ g$ surjective?

SOLUTION:

Solution. No, $f \circ g$ is not surjective, as for all $x \in \mathbb{R}$, the value $(f \circ g)(x) = ((x \sin x) + 2)^2$, being the square of a real number, is never equal to -1 (or to any negative number). I.e., there is no $x \in \mathbb{R}$ such that $(f \circ g)(x) = -1$.

(j) (2 points) Is $g \circ f$ surjective?

SOLUTION:

Solution. Yes, $g \circ f$ is surjective, since $f(\mathbb{R}) = \mathbb{R}_{\geq 0}$, where $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} : x \geq 0\}$, and then we have $(g \circ f)(\mathbb{R}) = g(f(\mathbb{R})) = g(\mathbb{R}_{\geq 0}) = \mathbb{R}$, using the problem above about the image of g. \Box One can also do this working with individual elements as follows. Given any $y \in \mathbb{R}$, we have seen above that there exists $a \in \mathbb{R}_{\geq 0}$ such that g(a) = y. Then, one can see that $f(\sqrt{a} - 2) = ((\sqrt{a} - 2) + 2)^2 = a$. Consequently, $(g \circ f)(\sqrt{a} - 2) = g(f(\sqrt{a} - 2)) = g(a) = y$. Therefore, for all $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ such that $(g \circ f)(x) = y$.

Total for Question 4: 20

5. (20 points) • Suppose that $\phi : A \to B$ and $\psi : B \to C$ are maps of sets. **TRUE** or **FALSE**:

If $\psi \circ \phi$ *is surjective, then* ψ *is surjective.*

If true, give a *proof* of the statement. If false, provide a *counter example*, and prove that it is a counter example. Your solution must start with the sentence, *"This statement is TRUE,"* or the sentence, *"This statement is FALSE."*

SOLUTION:

Solution. This statement is TRUE. We will prove the contrapositive, namely that *if* ψ *is not surjective, then* $\psi \circ \phi$ *is not surjective.* So, let us assume that ψ is not surjective. Then, by definition, there is some $c \in C$ such that for all $b \in B$, we have $\psi(b) \neq c$. Then for all $a \in A$, we have $(\psi \circ \phi)(a) = \psi(\phi(a)) \neq c$, since $\phi(a) \in B$. Therefore $\psi \circ \phi$ is not surjective.

RUBRIC: See pdf.

Total for Question 5: 20

6. (20 points) • The function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by the formula f(x, y) = (3x + 5y, x + 2y) is bijective. *Find its inverse.* You must show that your inverse is an inverse for *f*.

SOLUTION:

Solution. The inverse $f^{-1} : \mathbb{R}^2 \to \mathbb{R}^2$ is given by $f^{-1}(a, b) = (2a - 5b, -a + 3b)$.

To find the inverse, suppose that f(x, y) = (a, b). Then we want to find x and y in terms of a and b. Using the formula for f(x, y), we see that (3x + 5y, x + 2y) = (a, b). This gives us two linear equations:

$$3x + 5y = a$$
$$x + 2y = b$$

You can solve this in any way you like. Here is one approach. We can reorder the equations:

Then we can take -3 times the first equation and add it to the second to get the equations

$$x + 2y = b$$
$$-y = a - 3b$$

Then we can add twice the second equation to the first:

$$x = 2a - 5b$$
$$-y = a - 3b$$

This gives that $f^{-1}(a, b) = (2a - 5b, -a + 3b)$.

Let us now confirm that f^{-1} as defined above is an inverse for f. We have

$$f^{-1}(f(x,y)) = f^{-1}(3x + 5y, x + 2y) = (2(3x + 5y) - 5(x + 2y), -(3x + 5y) + 3(x + 2y)) = (x, y),$$

$$f(f^{-1}(a,b)) = f(2a - 5b, -a + 3b) = (3(2a - 5b) + 5(-a + 3b), (2a - 5b) + 2(-a + 3b)) = (a,b),$$

so that $f^{-1} \circ f = \operatorname{Id}_{\mathbb{R}^2}$ and $f \circ f^{-1} = \operatorname{Id}_{\mathbb{R}^2}$.

Total for Question 6: 20

Page 11 of 11