Final Exam

Intro to Discrete Math MATH 2001

Fall 2024

Sunday December 15, 2024

NAME: ____

PRACTICE EXAM

Question:	1	2	3	4	5	6	Total
Points:	20	20	20	20	20	20	120
Score:							

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 60 minutes to complete the exam.

1. (20 points) • The Fibonacci sequence F_1 , F_2 , F_3 ,... is defined by the rule that $F_1 = 1$, $F_2 = 1$, and for $n \ge 3$, one sets $F_n = F_{n-1} + F_{n-2}$. In other words, the Fibonacci sequence begins:

Give a *proof by induction* that for each natural number *n* the following statement is true:

$$\sum_{i=1}^n F_i^2 = F_n F_{n+1}.$$

Total for Question 1: 20

2. (20 points) • TRUE or FALSE:

If R and S are equivalence relations on a set A, then $R \subseteq S$ *if and only if for all* $X \in A/R$ *there exists* $Y \in A/S$ *with* $X \subseteq Y$.

If true, give a *proof* of the statement. If false, provide a *counter example*, and prove that it is a counter example. Your solution must start with the sentence, *"This statement is TRUE,"* or the sentence, *"This statement is FALSE."*

Recall that A/R is the set of equivalence classes for the equivalence relation R, and A/S is the set of equivalence classes for the equivalence relation S.

Total for Question 2: 20

- 3. Answer the following questions about maps of sets.
 - (a) (4 points) Write down all the maps (functions) of sets $f : \{1,2\} \rightarrow \{1,2\}$ by listing the values of f(1) and f(2).

1. f(1) = f(2) = 2. f(1) = f(2) = 3. f(1) = f(2) = 4. f(1) = f(2) = 4. f(1) = 1. f(2) = 1. f(2

- (b) (2 points) Circle the maps above that are injective.
- (c) (2 points) Are there any maps above that are injective but not surjective?
- (d) (5 points) How many injective maps of sets $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ are there? Explain.

(e) (2 points) *How many bijective maps of sets* $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ *are there?* Explain.

(f) (5 points) If A and B are finite sets, how many bijective maps of sets $f : A \rightarrow B$ are there? Explain.

Total for Question 3: 20

- **4.** Consider the set $\Gamma = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + 4x y = -4\}$, and the function $g : \mathbb{R} \to \mathbb{R}$ defined as $g(x) = x \sin(x)$.
 - (a) (5 points) Show that Γ defines a map (function) $f : \mathbb{R} \to \mathbb{R}$?

(b) (1 point) What is f(1)?

- (c) (1 point) Write a formula for f(x).
- (d) (1 point) *What is the source (domain) of f?*
- (e) (3 points) What is the image of g?

(f) (2 points) *Write formulas for* $g \circ f$ *and* $f \circ g$.

(g) (1 point) *Find* $(g \circ f)(1)$.

(h) (2 points) Find $(f \circ g)^{-1}(\{4\}) \cap \{x \in \mathbb{R} : g(x) \ge 0\}.$

(i) (2 points) Is $f \circ g$ surjective?

(j) (2 points) Is $g \circ f$ surjective?

Total for Question 4: 20

5. (20 points) • Suppose that $\phi : A \to B$ and $\psi : B \to C$ are maps of sets. **TRUE** or **FALSE**:

If $\psi \circ \phi$ *is surjective, then* ψ *is surjective.*

If true, give a *proof* of the statement. If false, provide a *counter example*, and prove that it is a counter **example**. Your solution must start with the sentence, *"This statement is TRUE,"* or the sentence, *"This statement is FALSE."*

Total for Question 5: 20

Page 7 of 8

6. (20 points) • The function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by the formula f(x, y) = (3x + 5y, x + 2y) is bijective. *Find its inverse*. You must show that your inverse is an inverse for *f*.

Total for Question 6: 20

Page 8 of 8