CHAPTER 170

Review of complex analysis in one variable

This gives a brief review of some of the basic results in complex analysis. In
particular, it outlines the background in single variable complex analysis that is
discussed in [ , §1.1].

1. Complex numbers

We define the complex numbers C to be the field (R?, +, -) where (R?, +) is the
standard R-vector space of dimension 2, and - is defined by (a,b) - (¢,d) = (ac —
bd,ad + bc). For convenience write (a,b) = a + ib. We will denote by CO(2, R) the
group of real two by two conformal matrices:

CO(2,R) = {( — ) : (a,b) e]RZ—{o}}.
Set

CO(2,R) = CO(2,R) U < 8 8 )

This is a ring under matrix addition and multiplication.
Exercise 1.1. Show that there is an isomorphism of rings
¢:C — CO(2,R)
a-+ib— ( a b ) .
b a
Exercise 170.1.2. Given a linear map A : R?> — 2, there exists a linear map o €
M(1,C) = C making the following diagram commute

R2 —4 R2

cC —— C
ifand only if A € CO(2,R). In this case A = ¢(x). In particular, given a + ib € C,
then multiplication of complex numbers by a + ib, when viewed as an R-linear map of R?,
is given by ¢p(a + ib).

2. Holomorphic maps
Definition 2.3 (Holomorphic map). Let U C C be an open subset. A map
f:u—=cC

is said to be holomorphic if it at each point p € U, the real differential Dpf : R> — R?
exists and is complex linear (i.e., Dpf € 66(2,]1?)).
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1042 170. REVIEW OF COMPLEX ANALYSIS IN ONE VARIABLE

EXAMPLE 2.4. A complex analytic function on an open subset of the complex
plane is holomorhpic (on that open subset). We will recall below the proof that the
converse holds.

EXAMPLE 2.5. In particular, the function e* := ) ” %n, is analytic on C, and is
therefore holomorphic.

Corollary 2.6. Let U C C = R? be an open subset. A map f : U — C that
is differentiable at each point p € U is holomorphic if and only if, writing f(x,y) =
u(x,y) +iv(x,y), the Cauchy—-Riemann equations

S =50), 50 = =5

hold at each point p € U.

PROOF. This follows immediately from the definitions. O

REMARK 2.7. The Cauchy-Riemann equations imply that if we define % =
3 (i + i%), then a differentiable function f(z) = u(x,y) + iv(x,y) is holomor-

X

phic on an open set U if and only if £ f(z) = 0 for every z € U.

Recall that if I is a (positively oriented) smooth contour in the complex plane,
parameterized by a smooth map v : [a,b] — C, then

b
[ f@dz= [ o) by
¥ a

EXAMPLE 2.8. The main example is:

2ti n= -1

nd —
/E;BS(O)Z : { 0 n#-1,

where B (0) is the ball of radius € > 0 around the origin.

The main bound that one uses repeatedly is:

) [5G < [ 17l < sup s
JT JT zell
where |I'| is the length of the path T (e.g., [ ,§10.8 Eq. (5), p.202]). *

1[ , p-102] proof of this is as follows. For any continuous function g : [a,b] — C, we have

b b
[ s < [t
a a
Indeed, for any real 6, we have
b b ) b
Re {e*ﬂ/ (1) dt} :/ Re [e~g(1)] dtg/ lg(1)] dt.
a a a

Then taking any 6 such that j;]b g(t) dt = re®®, this gives the result. Finally, take g(t) = f(y(t))7/(t) to
obtain the result above.
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Lemma 2.9. Let U C C be an open subset. A continuous function f : U — C is
holomorphic if and only if for every zog € U and every open disc B C U containing z
with B, C U, we have

1 f(2)
(89) f(ZO) - 271 9B. Z — Zod‘z'

PROOF. We sketch the proof. Suppose first that f is holomorphic. The key
point is that the function f(z)/(z — z¢) is holomorphic everywhere in B, except
for the point zy. Therefore, using say Stoke’s Theorem, the integral in (89) is the
same for every positively oriented circle C, := 9dB; of positive radius r contained
in the disk B¢, and containing zy. Now let us focus on such circles centered at zy,
and consider:

/ f(2) dz:/ flzo) 4o [ f2)=f(z0),,
Cr r

(z—z0) (z —20) ¢ (z—20)
=27if(z0) + | Mdz.
¢ (z—20)

Using the bound on the modulus of the integral (88), and taking the limit as r goes
to 0, the integral on the right goes to 0, and one obtains (89).

For the converse, we will use a special case of [ , Thm 10.7, p.199], and
get analyticity in the process. The point is to show that

s@=om [ Ty

T 27 JaBe(zg) Z — W
is an analytic function in w on Be(zp). The point is that by assumption g(w) =
f(w). Note that holomorphicity is immediate, using that 1/z — w is continuously
differentiable in w, to pass % through the integral, and use that a% Z_lw = 0 since
z # w. To prove analyticity, we use that for w € B¢(zp), we have
11 1 1 i(w—zo)”_z (w—zp)"
Z—w z—zolf% z—z0 = (z—z0)" = (z—z0)"H!
f(2)

(z—w) —

converges uniformly in z for fixed w € Be(zp). Therefore, we have

w—zg)" . . . . .
Yoo f(2) (E_ZO)OH) —, which, since f is continuous, can be shown to be uniformly
convergent in z for fixed w € B(zp). Then integrating against dz, using uniform

convergence, and that w — z is constant with respect to z, we see that g(w) =

Yo o an(w — z9)" where a, = 5= faBe(zo) #dz. O

Corollary 2.10. Let U C C be an open subset. Then f : U — C is holomorphic if
and only if it is complex analytic.

PROOF. This is contained in the proof above. g

REMARK 2.11. The proof above shows that if f : U — C is just assumed to be
continuous, then

RTINS f(z)
F(z0) = hmi/aBe(zo) EACN

e—0 27ti Z— 2z

2.1. Basic properties of holomorphic maps. Here we review a few basic facts
about holomorphic maps.
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2.1.1. Local structure theorem.

Theorem 2.12 (Local structure theorem). Let f : U — C be a holomorphic map.
Then locally, f factors as z — z™, followed by a holomorphic isomorphism.

REMARK 2.13. More precisely we mean that for each point p € U, there is a
ball Be(p), so that f|p, () : Be(p) — f(Be(p)) factors as

z=(z—p)™

g
Be(p) ——— Ben(0) —— f(Be(p))
where g is a holomorphic isomorphism.

PROOF. To make the formulas simpler, take p = 0. We have immediately
from analyticity that f(z) = z™h(z), where h(z) is nowhere vanishing in a neigh-
borhood of 0. We claim there is g(z) such that g(z)" = h(z). In short, using that
h(z) is nowhere vanishing, and possibly taking a smaller neighborhood, we can
define a branch of log and set g(z) = exp(: logh(z)). O

REMARK 2.14. To avoid technicalities with logs, just observe that 1'(z)/h(z)
is holomorphic near 0. Therefore, using analyticity of holomorphic functions, we

can find a(z) such that a’(z) = h'(z)/h(z). Then we have 4 (h(z)e ")) = 0, so

that /1(z) = Ce®®) for some constant C. Then we set g(z) = ent(?),

REMARK 2.15. The number m is determined uniquely at a point p € U by the
number of preimages of f near f(p), or equivalently, by the order of vanishing of

fatp.
Corollary 2.16. The zero set of a nonconstant holomorphic function has no limit
points in the domain of definition.

PROOF. This follows immediately from the structure theorem (and the ele-
mentary case of z — z'™). O
2.1.2. Open mapping theorem.
Theorem 2.17 (Open mapping). Nonconstant holomorphic maps are open (take
open sets to open sets).

PROOF. This follows immediately from the local structure theorem. O

2.1.3. Maximum principle.

Theorem 2.18 (Maximum principle). Let U C C be open and connected. If f :
U — C is holomorphic and non-constant, then |f| has no local maximum in U. If U is
bounded and f can be extended to a continuous function f : U — C, then |f| takes its
maximal values on the boundary oU.

PROOF. Use the open mapping theorem. O

2.1.4. Identity theorem.

Theorem 2.19 (Identity theorem). If f, g : U — C are two holomorphic functions
on a connected open subset U C C such that f(z) = g(z) for all z in a non-empty open
subset V. C C, then f = g.
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REMARK 2.20. There are stronger versions of the identity theorem (e.g., take
any subset V with limit points), but in this form it immediately generalizes to
higher dimensions.

PROOF. From the corollary to the local structure theorem we have that zero
sets of nonconstant holomorphic functions have no limit points (in the domain of
definition). To prove the identity theorem, take the difference of the two functions
and consider the zero set. O

2.1.5. Riemann extension theorem.

Theorem 170.2.21 (Riemann extension theorem). Let f : Be(zo)* — C be a bounded
holomorphic function on a punctured disk. Then f can be extended to a holomorphic
function f : Be(zg) — C.

PROOF. The boundedness shows that ¢(z) = (z — z9)?f(z) is complex differ-
entiable at zg, and therefore given by a power series. Since g(z) vanishes to at least
order 2 at zp, we have that f(z) is analytic. O

2.1.6. Riemann mapping theorem.

Theorem 2.22 (Riemann mapping theorem). Let U C C be a simply connected
open subset properly contained in C. Then U is biholomorphic to the unit ball B1(0); i.e.,
there exists a bijective holomorphic map f : U — By1(0) such that its inverse f ! is also
holomorphic.

PROOF. We refer the reader to [ , Thm. 14.8, p.283]. ([l

2.1.7. Liouville’s theorem.

Theorem 2.23 (Liouville’s Theorem). Every bounded holomorphic function f :
C — C is constant. In particular, there is no biholomorphic map between C and a ball
Be(0) with € < oo.

PROOF. Using analyticity, it is not hard to show that
)y — M / f(©)
FPE = 2 o T

Then on a circle Cg of radius R centered about z, if |f(z)| < Mg for all z € Cg,
then the derivatives of f at zg satisfy (for each n € IN)
Tl!MR
£ 0| < R

Apply this to the first derivative, and let R — oo. O

2.1.8. Residue theorem.

Theorem 170.2.24 (Residue theorem). Let f : Be(zg)* — C be a holomorphic function
on a punctured disk. Then f can be expanded in a Laurent series f(z) = Y 5 _ o an(z —
20)" and the coefficient a_y is given by the residue formula

1
-1 = —— d .
1T 2 /aBen(zO)f ()=
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PROOEF. The existence of the Laurent series follows from basic results on an-
alytic functions (on annuli, we can take the sum of two analytic functions, where
for one, we invert z). Then we just integrate and use uniform convergence. O

2.1.9. Inverse function theorem.

Theorem 2.25 (Inverse function). Let f : U — C be a holomorphic map. If
f'(z0) # O, then f is locally a holomorphic isomorphism near z.

PROOEF. Use the real inverse function theorem, and the fact that the inverse of
a conformal matrix is conformal. O

REMARK 2.26. Using the structure theorem, one can show that if a holomor-
phic function is injective, then it is biholomorphic onto its image (indeed, locally
it must be z > z, so it is locally biholomorphic; but it is a bijection so it is globally
biholomorhpic). The same result will hold for maps f : U € C" — C”, but may
fail if the dimensions of the source and target are not the same; e.g., z + (z3,22) is
holomorphic and injective, but not biholomorphic onto its image.

2.1.10. Schwarz lemma.

Lemma 170.2.27 (Schwarz Lemma). Let f be a holomorphic function on an open neigh-
borhood of the closure of the disk Be(0). Assume that f vanishes to order k at the origin.

If there is some real number C such that |f(z)| < C for all z € B¢(0), then actually there
is the possibly stronger bound:
k
z
s <c(B)

€

forall z € B(0).

REMARK 170.2.28. In short, we know the maximum, say C, of |f(z)| occurs on the
boundary circle C¢(0). However, we can estimate how much smaller the modulus
of f is on the interior, by multiplying C by the fraction of the distance we are to
the boundary circle (to the power k).

PROOF. Fix z € B¢(0) and define a holomorphic function g;(w) on the open
neighborhood of the closure of the disk Be(0) on which f is defined, as follows:
For such w, one sets

giw) imwhf (w5 ).

Then for |w| = € we have |g.(w)| < e ¥C. The maximum principle then implies
the same bound g, (w)| < e *C for all |w| < e. Hence

21 7M1f ()] = lg=(l2])] < e7*C,
giving the desired bound. 0

3. Meromorphic functions

Let U C C be open. Informally, meromorphic function f on U is a ratio
f = g/h of holomorphic functions on U, up to the obvious equivalence. A lit-
tle more precisely, it is an element of the fraction field of the integral domain of
holomorphic functions on U. In higher dimensions, we will have to work a lit-
tle harder, since we will not have enough global holomorphic functions to define



3. MEROMORPHIC FUNCTIONS 1047

things this way. Observing that for U C C, multiplying by products of powers of
z — p for different points p (or more generally Ahlfors Theorem 7 p.195, and gen-
eralizing the proof to arbitrary open sets), one can define meromorphic functions
equivalently to be functions given locally by the ratio of holomorphic functions.
To make this precise, we make the following definition.
Given a nowhere dense (i.e., closure has empty interior) subset S C U (e.g.,

S has no limit points in U), and a map of sets f : U —S — C, wesay (S, f) isa
representative for a meromorphic function on U if there exist:

e anopen cover U = (J;c; Uj,

e holomorphic functions g;, h; : U; — C,
satisfying

hilu,—s - flu—s = &ilu;—s

for every i. We say that (S, f) ~ (S, f') if setting S” = SU S/, then f|;_g» =
f'lur—sr. A meromorphic function on U is an equivalence class of representatives.

REMARK 3.29. One can show that the set of meromorphic functions on U is a
field.

REMARK 3.30. Recall that a limit point of S is a point of the closure S that is
not in S. As mentioned above, if S has no limit points then it is nowhere dense.
Indeed, if S has no limit points, then it is closed. If S had nonempty interior, then
it would have limit points. Thus if S has no limit points, it is nowhere dense. On
the other hand, the converse fails; there can be sets S that are nowhere dense that
have limit points. Indeed, in U = B;(0), take S = {1/n : n > 2}. This set has
closure with empty interior, but it has a limit point, 0.



