Exercise 4.34

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 4.34 from Fraleigh [Fra03, §4]:

Exercise 4.34. Let *G* be a group with a finite number of elements. Show that for any $a \in G$, there exists an $n \in \mathbb{Z}^+$ such that $a^n = e$. [*Hint:* Consider $e, a, a^2, ..., a^m$, where *m* is the number of elements in *G*, and use the cancellation laws.]

Solution. Let $a \in G$, and consider the list $e, a, a^2, ..., a^m$, where m is the number of elements in G. Since there are only m elements in G, and there are m + 1 elements in the list, it must be that there are two elements in the list that are equal. In other words, there must be $r, s \in \{0, 1, ..., m\}$ with r < s such that $a^r = a^s$. Then multiplying on the right by a^{-r} (:= $(a^{-1})^r$), we have that $e = a^{s-r}$. Setting n = s - r > 0, we have that $a^n = e$, as desired.

Date: October 5, 2021.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu