Exercise 15.39

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 15.39 from Fraleigh [Fra03, §15]:

Exercise 15.39. Prove that A_n is simple for $n \ge 5$, following the steps and hints given.

- **a.** Show that A_n contains every 3-cycle if $n \ge 3$.
- **b.** Show that A_n is generated by the 3-cycles for $n \ge 3$. [*Hint*: Note that (a,b)(c,d) = (a,c,b)(a,c,d) and (a,c)(a,b) = (a,b,c).]
- **c.** Let *r* and *s* be fixed elements of $\{1, 2, ..., n\}$ for $n \ge 3$. Show that A_n is generated by the *n* "special" 3-cycles of the form (r, s, i) for $1 \le i \le n$ [*Hint:* Show every 3-cycle is the product of "special" 3-cycles by computing

$$(r,s,i)^2$$
, $(r,s,j)(r,s,i)^2$, $(r,s,j)^2(r,s,i)$,

and

$$(r,s,i)^{2}(r,s,k)(r,s,j)^{2}(r,s,i).$$

Observe that these products give all possibly types of 3-cycles.]

d. Let *N* be a normal subgroup of A_n for $n \ge 3$. Show that if *N* contains a 3-cycle, then $N = A_n$. [*Hint:* Show that $(r,s,i) \in N$ implies that $(r,s,j) \in N$ for j = 1, 2, ..., n by computing

$$((r,s)(i,j))(r,s,i)^{2}((r,s)(i,j))^{-1}.]$$

- **e.** Let *N* be a nontrivial normal subgroup of A_n for $n \ge 5$. Show that one of the following cases must hold, and conclude in each case that $N = A_n$.
 - **Case I:** *N* contains a 3-cycle.

Date: August 8, 2021.

- Case II: N contains a product of disjoint cycles, at least one of which has length greater than 3. [*Hint:* Suppose N contains the disjoint product σ = μ(a₁, a₂, ..., a_r). Show that σ⁻¹(a₁, a₂, a₃)σ(a₁, a₂, a₃)⁻¹ is in N, and compute it.]
- Case III: *N* contains a disjoint product of the form $\sigma = \mu(a_4, a_5, a_6)(a_1, a_2, a_3)$. [*Hint*: Show $\sigma^{-1}(a_1, a_2, a_4)\sigma(a_1, a_2, a_4)^{-1}$ is in *N*, and compute it.]
- Case IV: *N* contains a disjoint product of the form *σ* = μ(*a*₁, *a*₂, *a*₃) where μ is a product of disjoint 2-cycles. [*Hint*: Show *σ*² ∈ *N* and compute it.]
- Case V: N contains a product σ of the form σ = μ(a₃, a₄)(a₁, a₂) where μ is a product of an even number of disjoint 2-cycles. [*Hint*: Show that σ⁻¹(a₁, a₂, a₃)σ(a₁, a₂, a₃)⁻¹ is in N, and compute it to deduce that α = (a₂, a₄)(a₁, a₄) is in N. Using n ≥ 5 for the first time, find i ≠ a₁, a₂, a₃, a₄ in {1, 2, ..., n}. Let β = (a₁, a₃, i). Show that β⁻¹αβα ∈ N, and compute it.]

Solution. **a.** A_n contains every 3-cycle if $n \ge 3$.

Proof. Let $(a_1, a_2, a_3) \in S_n$ be a 3-cycle. Since $(a_1, a_2, a_3) = (a_1, a_2)(a_3, a_2)$ it follows from the definition that $(a_1, a_2, a_3) \in A_n$.

b. A_n is generated by the 3-cycles for $n \ge 3$.

Proof. Let $\sigma \in A_n$ be a nontrivial element. By definition there is an expression of σ

$$\sigma=\tau_1\tau_2\cdots\tau_{2n-1}\tau_{2n}$$

as a composition of transpositions $\tau_1, \ldots, \tau_{2n}$ for some $n \in \mathbb{N}$. Since there are *n*-pairs of transpositions in the expression, the claim will follow if we can show that for any transpositions $\tau, \hat{\tau} \in S_n$ with $\tau \neq \hat{\tau}$, then $\tau\hat{\tau}$ is a composition of 3-cycles.

To prove this, suppose $\tau = (a_1, a_2)$ and $\hat{\tau} = (a_3, a_4)$. There are two cases to consider:

- (1) If $a_i \neq a_j$ for $i, j \in \{1, 2, 3, 4\}$ and $i \neq j$, then $(a_1, a_2)(a_3, a_4) = (a_1, a_3, a_2)(a_1, a_3, a_4)$.
- (2) Otherwise $a_i = a_j$ for some $i \neq j$, and we can assume without loss of generality that $a_2 = a_4$. Then we have $(a_1, a_2)(a_3, a_2) = (a_1, a_2, a_3)$.

Thus $\tau \hat{\tau}$ is a composition of 3-cycles, completing the proof of Claim (b).

c. Fix $r, s \in \{1, ..., n\}$ with $r \neq s$. If $n \geq 3$, then A_n is generated by the set of 3-cycles $\{(r, s, i) : 1 \leq i \leq n\}$.

Proof. After some manipulation, one can establish the identities:

- (i) $(r, s, i)^2 = (s, r, i),$
- (ii) $(r, s, j)(r, s, i)^2 = (r, i, j),$
- (iii) $(r, s, j)^2(r, s, i) = (s, i, j),$
- (iv) $(r,s,i)^2(r,s,k)(r,s,j)^2(r,s,i) = (i,j,k).$

Since every 3-cycle is of the form of one of those above, it follows that A_n is generated by the set of 3-cycles $\{(r, s, i) : 1 \le i \le n\}$.

d. Suppose $n \ge 3$. Let $N \triangleleft A_n$ be a normal subgroup. If N contains a 3-cycle then $N = A_n$.

Proof. Suppose *N* contains a 3-cycle σ . Then $\sigma = (r, s, i)$ for some choice of $r, s, i \in \{1, ..., n\}$. Observe (after some manipulation) that for any $j \neq i \in \{1, ..., n\}$ we have

$$((r,s)(i,j))(r,s,i)^2((r,s)(i,j))^{-1} = (r,s,j).$$

The expression on the left in N since it is a conjugate of an element of N. Thus N contains the set $\{(r, s, j) : 1 \le j \le n\}$. By virtue of part **c**., it follows that $N = A_n$.

e. Suppose $n \ge 5$. If $N \triangleleft A_n$ is a non-trivial normal subgroup, then N contains a 3-cycle.

Proof. We will do this in a case by case analysis. The first step is to show that if $N \triangleleft A_n$ is a non-trivial normal subgroup, then one of the following cases holds (note this is a slight simplification of the list given in the problem, but is essentially the same):

CASE I: There exists $\sigma \in N$ that can be written as a disjoint product of the form $\sigma = \mu(a_1, ..., a_r)$ for some $r \ge 4$.

CASE II: There exists $\sigma \in N$ that can be written as a disjoint product of the form $\sigma = \mu(a_4, a_5, a_6)(a_1, a_2, a_3)$. **CASE III:** There exists $\sigma \in N$ that can be written as a disjoint product of the form $\sigma = \mu(a_1, a_2, a_3)$, with μ a disjoint product of transpositions.

CASE IV: There exists $\sigma \in N$ that can be written as a disjoint product of the form $\sigma = \mu(a_3, a_4)(a_1, a_2)$, with μ a disjoint product of transpositions.

To see that one of these cases must hold, consider the fact that any non-trivial $\sigma \in S_n$ can be written as a product of disjoint cycles

$$\sigma = \sigma_1 \dots \sigma_m$$

for some $m \in \mathbb{N}$. Since disjoint cycles commute, we may reorder so that the length of the cycles is

non-decreasing. The fact that one of the cases above must hold is then obvious.

Now we will show that in each case above, *N* contains a 3-cycle. For Case I, consider the expression $\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}$. This is in *N* since $(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}$ is a conjugate of an element of *N*. On the other hand, after some algebra, one has

$$\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1} = (a_1, a_3, a_r),$$

so that *N* contains a 3-cycle.

For Case II, consider the expression $\sigma^{-1}(a_1, a_2, a_4)\sigma(a_1, a_2, a_4)^{-1}$. Again this is clearly in *N*, and after some algebra one has

$$\sigma^{-1}(a_1, a_2, a_4)\sigma(a_1, a_2, a_4)^{-1} = (a_1, a_4, a_2, a_6, a_3)$$

Thus *N* contains a cycle of length five, and so by Case I, it also contains a cycle of length three.

For Case III, one has

$$\sigma^2 = (a_1, a_3, a_2)$$

using the fact that μ^2 is the identity (it is the product of disjoint transpositions). Thus *N* contains a 3-cycle.

Finally, for Case IV, consider $\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}$. Some algebra shows that this is equal to $(a_1, a_3)(a_2, a_4)$. We call this permutation α , which as above, is in *N*. Now let $\beta = (a_1, a_3, i)$ for some $i \in \{1, ..., n\} - \{a_1, ..., a_n\}$. Then

$$\beta^{-1}\alpha\beta\alpha = (a_1, a_3, i),$$

which again is in *N* for the same reason. Thus *N* contains a 3-cycle.

Let us conclude by showing that A_n is simple for $n \ge 5$. Let $N \triangleleft A_n$ be a non-trivial normal subgroup of A_n . In the proof of part **e**. above, we showed that such a subgroup must contain a 3-cycle. In part **d**. we showed that if N contains a 3-cycle, then it is equal to A_n . This proves that the only normal subgroups of A_n are the trivial subgroup and A_n . Thus A_n is simple.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu