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1. e Consider the following subset of real 2 x 2 matrices:

H:= caeR Yy CMy(R).
01

(a) (10 points) Show that matrix multiplication defines a binary operation on H.

SOLUTION
a
Solution. We must show that for all A,B € H, we have AB € H. To thisend, let A =
0 1
1 0 1 a 1 b 1 a+b
and B = . Then we have AB = = so that AB €
0 1 01 01 0 1
O

(b) (10 points) Does the function ¢ : H — R, given by

Qive an isomorphism of the binary structure (H,-) (here - denotes matrix multiplication) with the binary

structure (R, +)? Explain.

SOLUTION

Solution. Yes, ¢ gives an isomorphism of (H, -) with (R, +).

First we must show that given A,B € H, we have ¢(AB) = ¢(A) + $(B). To this end, let A =

a
and B = . Then we have
0 1 01
1 a 1 b 1 a+b
¢(AB) = ¢ =¢ =a+b=¢(A)+¢(B).
0 1 0 1 0 1
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Next we must show that ¢ is one-to-one and onto. To show it is one-to-one, let A = and
01
1
B = . Then if ¢(A) = ¢(B), this means that a = b, so that A = B. To show ¢ is onto, let
0 1
1 a
a € R. Then ¢ = a, so that ¢ is onto. O
01
1
20 points
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. (20 points) e Suppose that (G, *) is a binary structure such that:

1. The binary operation * is associative.
2. There exists a left identity element; i.e., there exists e € G such thatforallg € G, wehaveexg = g.

3. Left inverses exist; i.e., for all § € G, there exists g’l € G such that g’l xg =e.

Show that (G, ) is a group.

SOLUTION

Solution. For brevity, I am going to drop the  in what follows. Let ¢ € G, and let ¢~ ! be a left inverse

of g. Then we have g_l g = e, which, multiplying on the right by g_l, gives

(§'g)g 't =eg!

(s'g)s ' =g" (Def. of left id.)

Now let (¢71)~! be a left inverse of ¢~!. Multiplying both sides of the equation above on the left by

(¢71)~! we obtain:

(g H Mg 'gg =" gt

(g g h)gg t=e (Assoc., and def. of left inv.)
egg ' =e (Def. of left inv.)
gg ' =e (Def. of left id.)

In other words, the left inverse ¢! of g is also a right inverse of g.

Finally, multiplying the last equation gg~! = e on the right by g, we have

(g g =¢g
g(g'e) =g (Assoc., and def. of left id.)
ge=g (Def. of left inv.)

so that e is also a right identity.

In conclusion, we have shown that the binary structure <G, ) satisfies:
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1. The binary operation * is associative.

2. There exists an identity element; i.e., there exists e € G such that for all § € G, we haveex g =
gxe=gq.

3. Inverses exist; i.e., forall g € G, there exists g~! € Gsuchthatg lxg=g*xg ' =e.

Therefore, (G, *) is a group. O

20 points
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3. (10 points) e Let H be a subgroup of a group G. For a,b € G, leta ~ b if and only if a~'b € H. Show

that ~ is an equivalence relation on G.

SOLUTION

Solution. We must show that ~ is reflexive, symmetric, and transitive:

1. (Reflexive) We must show that for alla € G, we havea ~ a. Soleta € G. Wehavea la =e¢ € H,

so thata ~ a.

2. (Symmetric) We must show that foralla,b € G,ifa ~ b, thenb ~ a. Soleta, b € G, witha ~ b.
Then by definition we have a~'b € H. Since H is a subgroup, it is closed under taking inverses, so
that we have (a='b)~! € H. But (a='0) ' = b 1(a~')"! = b 'a,so thatb ~ a.

3. (Transitive) We must show that for all 4,b,c € G, we havea ~ b and b ~ ¢ implies thata ~ c.
So let a,b,c € G, and assume that a ~ b and b ~ c. That is to say, a b € Hand b™1¢c € H.
Since H is a subgroup, it is closed under the binary operation, so that (a~'b)(b~'c) € H. But

(a='b)(b~'c) = alec = a~'c,so thata ~ c.

This completes the proof. O

10 points
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4. (a) (5 points) e In the group Zyg, what is the order of the subgroup generated by the element 18?

SOLUTION:

The order of the subgroup generated by 18 is 14.

We have seen that for a nonzero element m € Z,, the order of the group (m) is equal to n/ ged(n, m).

Since gcd(28,18) = 2, we have that the order of the group (18) is equal to 14.

(b) (5 points) How many generators are there for the group Z,g?

SOLUTION:

There are 12 generators for the group Zys.

The generators are given by the numbersin {0, ...,27} that are co-prime to 28. These are exactly the
odd numbers (14 of these) that are not divisible by seven (7 and 21). To be explicit, the generators
are {1,3,5,9,11,13,15,17,19,23,25,27}.

10 points
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5. (a) (5points) e Is the permutation o = (1,6,4)(2,5) € S¢ even or odd?

SOLUTION:

o is odd.

We have
c=1(1,6,4)(2,5) = (1,6)(6,4)(2,5)

is the product of an odd number of transpositions.

2

(b) (5 points) Is the permutation o= even or odd?

SOLUTION:

o2 is even.

The square of any permutation is even.

(c) (5 points) Compute |c|; i.e., the order of o in S.

SOLUTION:

o] =6

The order of (1,6,4) is 3 and the order of (2,5) is 2. As ¢ is equal to the product of these disjoint

cycles, it follows that || = lem(3,2) = 6.

(d) (5 points) With o as above and T = (5,3,2), compute ot (as a product of disjoint cycles).

SOLUTION:

ot = (1,6,4)(3,5)

We have
ot = (1,6,4)(2,5)(5,3,2) = (1,6,4)(3,5).

20 points
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6. o Let A be a set, and let G < Sy be a subgroup of the group of permutations S4 of A. For an element

a € A, define G, := {c € G:0(a) =a}.

(a) (5points) Fora € A, show that G, is a subgroup of G.

SOLUTION

Solution. Certainly we have e € G, so that G, is nonempty. Now if 0,7 € Gy, then (07)(a) =
o(t(a)) = o(a) = a,so that ot € G,. Finally, if ¢ € G, I claim that ¢~ 1(a) = a, so that ¢! € G,.
Indeed, ¢(a) = a, so that applying ¢! to both sides we obtain c—!(c(a)) = c~!(a). Focusing on
the left hand side, we have ¢! (c(a)) = (¢7'0)(a) = e(a) = a, proving the claim. Thus G, is a

subgroup. O

(b) (5points) Let a,b € A, and suppose there exists ¢ € G such that b = o(a). Show that G, and G,

have the same cardinality.

SOLUTION

Solution. Let a,b € A, and suppose there exists ¢ € G such that b = o(a). Note that this also

implies that c~!(b) = a. I claim there is a one-to-one and onto function

f:G,— Gy, T oto L.

First, let us check this function is well-defined; i.e., that cto~! € G,. To this end, suppose T € G,.
Then (cte~1)(b) = o(t(¢7 (b)) = o(t(a)) = o(a) = b. Thus ot~ ! € Gy,

Now let us check that f is one-to-one and onto by constructing an inverse function
G, — Gy ur o luo.

The same argument above shows this function is well-defined. Now observe that f~!f(t) =
f Yoo ™) = o ote o = 1, and ff 1 (u) = o(¢c uo)o~! = u. Thus f~! is the inverse
function of f, and so f is one-to-one and onto. Thus, by definition, the cardinality of G, is the same

as the cardinality of Gj,. O
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7. (10 points) e Let H be a subgroup of a group G, and leta,b € G.

TRUE or FALSE: IfaH = bH, then Ha~! = Hb~1,

SOLUTION

Solution. This is TRUE. Recall that aH = bH if and only if b~'a € H, and similarly, Ha = Hb if and
only if ab~! € H. Applying this second condition to Hb~! and Ha~!, we see that Hb~! = Ha ! if and
only if b=1(a=1)~! € H; or, in other words, if and only if b~la € H. In other words, aH = bH <

blaeH «— Hb!=Hal O

Alternate Solution. This is TRUE. Indeed, suppose that aH = bH. Then we have that b = ah for some
h € H. It follows that Hb~' = H(ah)~! = Hh='a=! = Ha™ 1. O

10 points
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