Midterm

Abstract Algebra 1 MATH 3140

Summer 2021

Monday June 14, 2021

NAME: __

PRACTICE EXAM SOLUTIONS

Question:	1	2	3	4	5	6	7	Total
Points:	20	20	10	10	20	10	10	100
Score:								

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 90 minutes to complete the exam.

1. • Consider the following subset of real 2 × 2 matrices:

$$H:=\left\{ \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right): a \in \mathbb{R} \right\} \subseteq \mathrm{M}_{2}(\mathbb{R}).$$

(a) (10 points) Show that matrix multiplication defines a binary operation on H.

SOLUTION

Solution. We must show that for all $A, B \in H$, we have $AB \in H$. To this end, let $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$

and
$$B = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$
. Then we have $AB = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix}$ so that $AB \in H$.

(b) (10 points) *Does the function* ϕ : $H \to \mathbb{R}$ *, given by*

$$\phi\left(\left(\begin{array}{cc}1&a\\0&1\end{array}\right)\right)=a,$$

give an isomorphism of the binary structure $\langle H, \cdot \rangle$ (here \cdot denotes matrix multiplication) with the binary structure $\langle \mathbb{R}, + \rangle$? Explain.

SOLUTION

Solution. Yes, ϕ gives an isomorphism of $\langle H, \cdot \rangle$ with $\langle \mathbb{R}, + \rangle$.

First we must show that given
$$A, B \in H$$
, we have $\phi(AB) = \phi(A) + \phi(B)$. To this end, let $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$. Then we have
 $\phi(AB) = \phi\left(\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}\right) = \phi\left(\begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix}\right) = a+b = \phi(A) + \phi(B).$

Next we must show that ϕ is one-to-one and onto. To show it is one-to-one, let $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ and

$$B = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$
. Then if $\phi(A) = \phi(B)$, this means that $a = b$, so that $A = B$. To show ϕ is onto, let $a \in \mathbb{R}$. Then $\phi\left(\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}\right) = a$, so that ϕ is onto. \Box

1	
20 points	

- **2.** (20 points) Suppose that $\langle G, * \rangle$ is a binary structure such that:
 - 1. The binary operation * is associative.
 - 2. There exists a **left** identity element; i.e., there exists $e \in G$ such that for all $g \in G$, we have e * g = g.
 - 3. Left inverses exist; i.e., for all $g \in G$, there exists $g^{-1} \in G$ such that $g^{-1} * g = e$.

Show that $\langle G, * \rangle$ is a group.

SOLUTION

Solution. For brevity, I am going to drop the * in what follows. Let $g \in G$, and let g^{-1} be a left inverse of g. Then we have $g^{-1}g = e$, which, multiplying on the right by g^{-1} , gives

$$(g^{-1}g)g^{-1} = eg^{-1}$$

 $(g^{-1}g)g^{-1} = g^{-1}$ (Def. of left id.)

Now let $(g^{-1})^{-1}$ be a left inverse of g^{-1} . Multiplying both sides of the equation above on the left by $(g^{-1})^{-1}$ we obtain:

$$(g^{-1})^{-1}(g^{-1}g)g^{-1} = (g^{-1})^{-1}g^{-1}$$

$$((g^{-1})^{-1}g^{-1})gg^{-1} = e$$

$$egg^{-1} = e$$
(Assoc., and def. of left inv.)
$$gg^{-1} = e$$
(Def. of left id.)

In other words, the left inverse g^{-1} of g is also a right inverse of g. Finally, multiplying the last equation $gg^{-1} = e$ on the right by g, we have

$$(gg^{-1})g = eg$$

 $g(g^{-1}g) = g$ (Assoc., and def. of left id.)
 $ge = g$ (Def. of left inv.)

so that *e* is also a right identity.

In conclusion, we have shown that the binary structure $\langle G, * \rangle$ satisfies:

- 1. The binary operation * is associative.
- 2. There exists an identity element; i.e., there exists $e \in G$ such that for all $g \in G$, we have e * g = g * e = g.
- 3. Inverses exist; i.e., for all $g \in G$, there exists $g^{-1} \in G$ such that $g^{-1} * g = g * g^{-1} = e$.

Therefore, $\langle G, * \rangle$ is a group.

• •	
-	
2	

3. (10 points) • Let *H* be a subgroup of a group *G*. For $a, b \in G$, let $a \sim b$ if and only if $a^{-1}b \in H$. Show that \sim is an equivalence relation on *G*.

SOLUTION

Solution. We must show that \sim is reflexive, symmetric, and transitive:

- 1. (Reflexive) We must show that for all $a \in G$, we have $a \sim a$. So let $a \in G$. We have $a^{-1}a = e \in H$, so that $a \sim a$.
- 2. (Symmetric) We must show that for all $a, b \in G$, if $a \sim b$, then $b \sim a$. So let $a, b \in G$, with $a \sim b$. Then by definition we have $a^{-1}b \in H$. Since H is a subgroup, it is closed under taking inverses, so that we have $(a^{-1}b)^{-1} \in H$. But $(a^{-1}b)^{-1} = b^{-1}(a^{-1})^{-1} = b^{-1}a$, so that $b \sim a$.
- 3. (Transitive) We must show that for all $a, b, c \in G$, we have $a \sim b$ and $b \sim c$ implies that $a \sim c$. So let $a, b, c \in G$, and assume that $a \sim b$ and $b \sim c$. That is to say, $a^{-1}b \in H$ and $b^{-1}c \in H$. Since H is a subgroup, it is closed under the binary operation, so that $(a^{-1}b)(b^{-1}c) \in H$. But $(a^{-1}b)(b^{-1}c) = a^{-1}ec = a^{-1}c$, so that $a \sim c$.

This completes the proof.

3
10 points

4. (a) (5 points) • In the group \mathbb{Z}_{28} , what is the order of the subgroup generated by the element 18?

SOLUTION:

The order of the subgroup generated by 18 is 14.

We have seen that for a nonzero element $m \in \mathbb{Z}_n$, the order of the group $\langle m \rangle$ is equal to $n / \operatorname{gcd}(n, m)$. Since $\operatorname{gcd}(28, 18) = 2$, we have that the order of the group $\langle 18 \rangle$ is equal to 14.

(b) (5 points) How many generators are there for the group \mathbb{Z}_{28} ?

SOLUTION:

There are 12 generators for the group \mathbb{Z}_{28} .

The generators are given by the numbers in $\{0, ..., 27\}$ that are co-prime to 28. These are exactly the odd numbers (14 of these) that are not divisible by seven (7 and 21). To be explicit, the generators are $\{1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27\}$.

4	
10 points	

5. (a) (5 points) • *Is the permutation* $\sigma = (1, 6, 4)(2, 5) \in S_6$ *even or odd?*

<i>π</i> is odd
<i>U</i> 15 Out.

We have

SOLUTION:

$$\sigma = (1, 6, 4)(2, 5) = (1, 6)(6, 4)(2, 5)$$

is the product of an odd number of transpositions.

(b) (5 points) *Is the permutation* σ^2 *even or odd?*

SOLUTION:

 σ^2 is even.

The square of any permutation is even.

(c) (5 points) Compute $|\sigma|$; *i.e.*, the order of σ in S_6 .

001			-		
C(A)		11 H H	17 1		•
JU	டட	111	IU	$\perp N$	

The order of (1, 6, 4) is 3 and the order of (2, 5) is 2. As σ is equal to the product of these disjoint cycles, it follows that $|\sigma| = \text{lcm}(3, 2) = 6$.

 $|\sigma| = 6$

(d) (5 points) With σ as above and $\tau = (5, 3, 2)$, compute $\sigma \tau$ (as a product of disjoint cycles).

SOLUTION:

$$\sigma \tau = (1, 6, 4)(3, 5)$$

We have

$$\sigma\tau = (1,6,4)(2,5)(5,3,2) = (1,6,4)(3,5).$$

5	
20 points	

- **6.** Let *A* be a set, and let $G \leq S_A$ be a subgroup of the group of permutations S_A of *A*. For an element $a \in A$, define $G_a := \{\sigma \in G : \sigma(a) = a\}$.
 - (a) (5 points) For $a \in A$, show that G_a is a subgroup of G.

SOLUTION

Solution. Certainly we have $e \in G_a$ so that G_a is nonempty. Now if $\sigma, \tau \in G_a$, then $(\sigma\tau)(a) = \sigma(\tau(a)) = \sigma(a) = a$, so that $\sigma\tau \in G_a$. Finally, if $\sigma \in G_a$, I claim that $\sigma^{-1}(a) = a$, so that $\sigma^{-1} \in G_a$. Indeed, $\sigma(a) = a$, so that applying σ^{-1} to both sides we obtain $\sigma^{-1}(\sigma(a)) = \sigma^{-1}(a)$. Focusing on the left hand side, we have $\sigma^{-1}(\sigma(a)) = (\sigma^{-1}\sigma)(a) = e(a) = a$, proving the claim. Thus G_a is a subgroup.

(b) (5 points) Let $a, b \in A$, and suppose there exists $\sigma \in G$ such that $b = \sigma(a)$. Show that G_a and G_b have the same cardinality.

SOLUTION

Solution. Let $a, b \in A$, and suppose there exists $\sigma \in G$ such that $b = \sigma(a)$. Note that this also implies that $\sigma^{-1}(b) = a$. I claim there is a one-to-one and onto function

$$f: G_a \longrightarrow G_b, \quad \tau \mapsto \sigma \tau \sigma^{-1}.$$

First, let us check this function is well-defined; i.e., that $\sigma \tau \sigma^{-1} \in G_b$. To this end, suppose $\tau \in G_a$. Then $(\sigma \tau \sigma^{-1})(b) = \sigma(\tau(\sigma^{-1}(b)) = \sigma(\tau(a)) = \sigma(a) = b$. Thus $\sigma \tau \sigma^{-1} \in G_b$.

Now let us check that f is one-to-one and onto by constructing an inverse function

$$f^{-1}: G_b \longrightarrow G_a, \quad \mu \mapsto \sigma^{-1}\mu\sigma.$$

The same argument above shows this function is well-defined. Now observe that $f^{-1}f(\tau) = f^{-1}(\sigma\tau\sigma^{-1}) = \sigma^{-1}(\sigma\tau\sigma^{-1})\sigma = \tau$, and $ff^{-1}(\mu) = \sigma(\sigma^{-1}\mu\sigma)\sigma^{-1} = \mu$. Thus f^{-1} is the inverse function of f, and so f is one-to-one and onto. Thus, by definition, the cardinality of G_a is the same as the cardinality of G_b .

6 10 points **7.** (10 points) • Let *H* be a subgroup of a group *G*, and let $a, b \in G$.

TRUE or **FALSE**: If aH = bH, then $Ha^{-1} = Hb^{-1}$.

SOLUTION

Solution. This is TRUE. Recall that aH = bH if and only if $b^{-1}a \in H$, and similarly, Ha = Hb if and only if $ab^{-1} \in H$. Applying this second condition to Hb^{-1} and Ha^{-1} , we see that $Hb^{-1} = Ha^{-1}$ if and only if $b^{-1}(a^{-1})^{-1} \in H$; or, in other words, if and only if $b^{-1}a \in H$. In other words, $aH = bH \iff b^{-1}a \in H \iff Hb^{-1} = Ha^{-1}$.

Alternate Solution. This is TRUE. Indeed, suppose that aH = bH. Then we have that b = ah for some $h \in H$. It follows that $Hb^{-1} = H(ah)^{-1} = Hh^{-1}a^{-1} = Ha^{-1}$.

7	
10 points	