Midterm

Abstract Algebra 1 MATH 3140

Summer 2021

Monday June 14, 2021

NAME: _

PRACTICE EXAM

Question:	1	2	3	4	5	6	7	Total
Points:	20	20	10	10	20	10	10	100
Score:								

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You **may not discuss the exam** with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 90 minutes to complete the exam.

1. • Consider the following subset of real 2×2 matrices:

$$H:=\left\{ \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right): a \in \mathbb{R} \right\} \subseteq \mathrm{M}_{2}(\mathbb{R}).$$

(a) (10 points) Show that matrix multiplication defines a binary operation on H.

(b) (10 points) *Does the function* ϕ : $H \to \mathbb{R}$ *, given by*

$$\phi\left(\left(\begin{array}{cc}1&a\\0&1\end{array}\right)\right)=a,$$

give an isomorphism of the binary structure $\langle H, \cdot \rangle$ (here \cdot denotes matrix multiplication) with the binary structure $\langle \mathbb{R}, + \rangle$? Explain.

1
20 points

- **2.** (20 points) Suppose that $\langle G, * \rangle$ is a binary structure such that:
 - 1. The binary operation * is associative.
 - 2. There exists a **left** identity element; i.e., there exists $e \in G$ such that for all $g \in G$, we have e * g = g.
 - 3. Left inverses exist; i.e., for all $g \in G$, there exists $g^{-1} \in G$ such that $g^{-1} * g = e$.

Show that $\langle G, * \rangle$ is a group.

2	
20 points	

3. (10 points) • Let *H* be a subgroup of a group *G*. For $a, b \in G$, let $a \sim b$ if and only if $a^{-1}b \in H$. Show that \sim is an equivalence relation on *G*.

3
10 points

4. (a) (5 points) • In the group \mathbb{Z}_{28} , what is the order of the subgroup generated by the element 18?

(b) (5 points) How many generators are there for the group \mathbb{Z}_{28} ?

4	
10 points	

5. (a) (5 points) • *Is the permutation* $\sigma = (1, 6, 4)(2, 5) \in S_6$ *even or odd?*

(b) (5 points) *Is the permutation* σ^2 *even or odd?*

(c) (5 points) Compute $|\sigma|$; *i.e.*, the order of σ in S_6 .

(d) (5 points) With σ as above and $\tau = (5,3,2)$, compute $\sigma\tau$ (as a product of disjoint cycles).

5
20 points

- **6.** Let *A* be a set, and let $G \leq S_A$ be a subgroup of the group of permutations S_A of *A*. For an element $a \in A$, define $G_a := \{ \sigma \in G : \sigma(a) = a \}$.
 - (a) (5 points) For $a \in A$, show that G_a is a subgroup of G.

(b) (5 points) Let $a, b \in A$, and suppose there exists $\sigma \in G$ such that $b = \sigma(a)$. Show that G_a and G_b have the same cardinality.

6	
10 points	

7. (10 points) • Let *H* be a subgroup of a group *G*, and let $a, b \in G$.

TRUE or **FALSE**: If aH = bH, then $Ha^{-1} = Hb^{-1}$.

7	
10 points	-