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1. (25 points) • Let G be a group with center Z(G). Show that if G/Z(G) is cyclic, then Z(G) = G. [Hint:

Show first there exists g ∈ G such that for any g1 ∈ G, there is a z1 ∈ Z(G) and n1 ∈ Z such that

g1 = gn1 z1. Then show for any g1, g2 ∈ G that g1g2 = g2g1.]

SOLUTION

Solution. It suffices to show that G is abelian (from the definition of the center, it follows immediately

that a group G is abelian if and only if G = Z(G)). To show G is abelian, we must show that given

g1, g2 ∈ G, then

g1g2 = g2g1.

To begin, since the group G/Z(G) is cyclic, it has a generator gZ(G) ∈ G/Z(G) for some g ∈ G. It

follows that there are integers n1, n2 such that

g1Z(G) = (gZ(G))n1 = gn1 Z(G) and g2Z(G) = (gZ(G))n2 = gn2 Z(G).

Equivalently, (gn1)−1g1, (gn2)−1g2 ∈ Z(G). We can rewrite this by saying that there exists z1, z2 ∈ Z(G)

such that (gn1)−1g1 = z1 and (gn2)−1g2 = z2, or rather, g1 = gn1 z1 and g2 = gn2 z2. Then

g1g2 = gn1 z1gn2 z2 = gn2 z2gn1 z1 = g2g1

since by definition z1, z2 commute with all elements of G, and g commutes with itself.
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2. (a) (15 points) • In a commutative ring with unity, show that (a + b)n =
n

∑
k=0

(
n
k

)
akbn−k.

SOLUTION

Solution. Since we are in a commutative ring with unity, when writing out

(a + b)n = (a + b)(a + b) · · · (a + b)

one can deduce that the number of monomials of the form akbn−k in the expansion will be (n
k),

corresponding to choosing k of the n factors above from which to take an a, and then taking a b

from the remaining n− k factors.

Here is another argument using induction. First observe that

(
n

k− 1

)
+

(
n
k

)
=

n!
(n− k + 1)!(k− 1)!

+
n!

(n− k)!k!
=

n!k
(n− k + 1)!k!

+
n!(n− k + 1)
(n− k + 1)!k!

=
(n + 1)!

(n + 1− k)!k!
=

(
n + 1

k

)
.

Now, using this, we will prove the assertion of problem using induction. We start with the case

n = 1, and we check that
1

∑
k=0

(
1
k

)
akb1−k = b + a = (a + b)1.

We now perform the inductive step. We assume that (a + b)m = ∑m
k=0 (

m
k )akbm−k for all m ≤ n for

some n ≥ 1. We then show that

(a + b)n+1 =
n+1

∑
k=0

(
n + 1

k

)
akbn+1−k.

Here is the computation:

(a + b)n(a + b) =

(
n

∑
k=0

(
n
k

)
akbn−k

)
(a + b) =

(
n

∑
k=0

(
n
k

)
ak+1bn−k

)
+

(
n

∑
k=0

(
n
k

)
akbn+1−k

)

=

(
n
0

)
bn+1 +

n

∑
k=1

((
n

k− 1

)
+

(
n
k

))
akbn+1−k +

(
n
n

)
an+1

=

(
n + 1

0

)
bn+1 +

n

∑
k=1

(
n + 1

k

)
akbn+1−k +

(
n + 1
n + 1

)
an+1 =

n+1

∑
k=0

(
n + 1

k

)
akbn+1−k.
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(b) (10 points) An element r of a ring R is said to be nilpotent if there exists some n ∈ N such that

rn = 0. Let N be the set of nilpotent elements of a commutative ring R with unity. Show that N is

an ideal in R.

SOLUTION

Solution. First we will show that the set of nilpotents is a subgroup. Since 0 ∈ N, we have that N

is nonempty. Now, let a, b ∈ N, we will show that (a− b) ∈ N. To do this, suppose that α, β ∈ N

are such that aα = bβ = 0. Let n be an integer such that n ≥ α + β. Then from the first part of the

problem we have

(a + (−b))n =
n

∑
k=0

(−1)n−k
(

n
k

)
akbn−k = 0

since k ≥ α or n− k ≥ β (otherwise n = k + (n− k) < α + β), so that ak = 0 or bn−k = 0. Thus N is

a subgroup.

To show that N is an ideal, let r ∈ R and a ∈ N. Suppose that an = 0. Then (ra)n = rnan = rn · 0 =

0, so that ra ∈ N.
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3. (25 points) • Let D be an integral domain, and suppose that for every descending chain of ideals in D

· · · ⊆ I4 ⊆ I3 ⊆ I2 ⊆ I1 ⊆ D

there is a positive integer n such that Im = In for all m ≥ n. Show that D is a field.

SOLUTION

Solution. Let 0 6= x ∈ D, and consider the chain of ideals

· · · ⊆ (x4) ⊆ (x3) ⊆ (x2) ⊆ (x)

Then there is some positive integer n such that (xn+1) = (xn). In particular, xn ∈ (xn+1), so that by

definition there exists y ∈ D such that xn = yxn+1. In other words, xn − yxn+1 = 0, or,

(1− yx)xn = 0.

Since we are in an integral domain, and x 6= 0, we have that xn 6= 0, and finally that 1− yx = 0, so that

x is a unit. Since we have shown that every nonzero element of D is a unit, we have that D is a field.
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4. (25 points) • Show that if F, E, and K are fields with F ≤ E ≤ K, then K is algebraic over F if and only if K is

algebraic over E, and E is algebraic over F. (You must not assume the extensions are finite.)

SOLUTION

Solution. This is Fraleigh Exercise 31.31. The solution is available on the course webpage.
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