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1. • Consider the dihedral group Dn, with n ≥ 3. Recall the notation we have been using: Dn has identity

element I, and is generated by elements R and D, satisfying the relations Rn = D2 = I and RD = DR−1.

Consider the cyclic subgroup 〈R2〉.

(a) (10 points) Show that 〈R2〉 is a normal subgroup of Dn.

SOLUTION

Solution. To show that 〈R2〉 is normal in Dn, it suffices to check for all g ∈ Dn that g〈R2〉g−1 ⊆ 〈R2〉.

(For a subgroup H of a group G, we have seen that H is normal if and only if gHg−1 ⊆ H for all

g ∈ G). So let Ra1 Db1 ∈ Dn and let R2k ∈ 〈R2〉 (here k ∈ Z). Then

Ra1 Db1 R2k(Ra1 Db1)−1 = Ra1 Db1 R2kDb1 R−a1 = Ra1 Db1 Db1 R(−1)b1 2kR−a1 = R(−1)b1 2k ∈ 〈R2〉.

Thus 〈R2〉 is normal in Dn.

(b) (10 points) Find the order of the group Dn/〈R2〉. [Hint: this may depend on the parity of n.]

SOLUTION

Solution.

|D4/〈R2〉| = 2 if n is odd, and 4 if n is even.

To see this, we note that the order of R in Dn is n. Consequently, if n is odd, then 〈R2〉 = 〈R〉, which

has order n. If n is even, then 〈R2〉 6= 〈R〉 and the order of 〈R2〉 is n/2. By Lagrange’s Theorem,

the order of Dn/〈R2〉 is then either 2n/n = 2 or 2n/(n/2) = 4. (Note that in the case where the

quotient Dn/〈R2〉 has order 4, it is isomorphic to Z2 ×Z2, not Z4, since the quotient has three

elements of order 2, namely, the cosets for R, D, and RD.)
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2. • Consider the map (or “function”) of polynomial rings

φ : Z[x] −→ Z4[x]

n

∑
k=0

akxk 7→
n

∑
k=0

[ak]xk,

where [ak] = ak (mod 4).

(a) (10 points) Show that φ is a homomorphism of rings.

SOLUTION

Solution. First we must show for all p(x), q(x) ∈ Z[x] that

φ(p(x) + q(x)) = φ(p(x)) + φ(q(x)) and φ(p(x)q(x)) = φ(p(x))φ(q(x)).

To do this, let us suppose that p(x) = ∑n
k=0 akxk and q(x) = ∑m

j=0 bjxj; since addition and multiplication

is commutative in Z[x] and Z4[x], we may assume that n ≤ m, and in fact, taking ak = 0 for k > n,

we may assume n = m. Then

φ(p(x) + q(x)) = φ

(
n

∑
k=0

akxk +
n

∑
j=0

bjxj

)
= φ

(
n

∑
k=0

(ak + bk)xk

)
=

n

∑
k=0

[ak + bk]xk

=
n

∑
k=0

[ak]xk +
n

∑
j=0

[bj]xj = φ(p) + φ(q).

Similarly,

φ(p(x) · q(x)) = φ

(
n

∑
k=0

akxk ·
n

∑
j=0

bjxj

)
= φ

(
2n

∑
i=0

i

∑
k=0

(akbi−k)xi

)
=

2n

∑
i=0

i

∑
k=0

[ak][bi−k]xi

=
n

∑
k=0

[ak]xk ·
n

∑
j=0

[bj]xj = φ(p(x)) · φ(q(x)).

Thus φ is a homomorphism of rings.

(b) (10 points) Describe the kernel of φ. (Do not just write down the definition; you need to describe an

explicit subset of Z[x].)
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SOLUTION

Solution.

ker φ = 4Z[x] = (4)

Indeed, suppose that p(x) = ∑n
k=0 akxk ∈ ker φ. Then [ak] = 0 for all k = 0, . . . , n. Thus ak ∈ 4Z

for all k = 0, . . . , n.
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3. (20 points) • Show that for a prime p, the polynomial xp + a ∈ Zp[x] is not irreducible for any a ∈ Zp.

SOLUTION

Solution. By Fermat’s Little Theorem (see Fraleigh Corollary 20.2), we know that bp = b for all b ∈ Zp.

Thus−a is a root of xp + a in Zp. It follows from the Factor Theorem (Fraleigh Corollary 23.3) that x + a

is a factor of xp + a. Thus, since p ≥ 2, we have that xp + a is not irreducible for any a ∈ Zp.
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4. (20 points) • Prove that the algebraic closure of Q in C is not a finite extension of Q.

SOLUTION

Solution. Let Q ⊆ C be the algebraic closure of Q in C. Then for each positive integer n, we have
n
√

2 ∈ Q ( n
√

2 is a root of xn − 2 ∈ Q[x]). Thus for each n we have extensions Q/Q( n
√

2)/Q. If Q were a

finite extension of Q, this would imply that [Q : Q] ≥ [Q( n
√

2) : Q] for every n (Fraleigh Theorem 31.4).

Using Eisenstein’s Criterion (Fraleigh Theorem 23.15) applied to the prime p = 2, one can show that

xn − 2 is irreducible, so that [Q( n
√

2) : Q] = n. In other words, if Q were a finite extension of Q, then we

would have [Q : Q] ≥ [Q( n
√

2) : Q] = n for every positive integer n, which is impossible. Thus Q is not

a finite extension of Q.
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5. (20 points) • Find the degree and a basis for the field extension Q(
√

2,
√

3) over Q.

SOLUTION

Solution. The field extension Q(
√

2,
√

3) over Q has degree 4, with a basis given by 1,
√

2,
√

3,
√

6.

To see this, we start with the extension Q(
√

2). By Eisenstein’s Criterion applied to the prime p = 2

(or using the fact that
√

2 is not rational), we see that x2 − 2 ∈ Q[x] is irreducible, so that the extension

Q(
√

2) over Q has degree 2, with basis given by 1,
√

2 (see Theorem 29.18 or Theorem 30.23 of Fraleigh).

Next I claim that the extension Q(
√

2,
√

3) over Q(
√

2) has degree 2, with basis given by 1,
√

3. To

prove this, it suffices to show (again, see Theorem 29.18 or Theorem 30.23) that x2 − 3 is irreducible

over Q(
√

2). Since this quadratic polynomial can only possibly factor into linear terms, it is equivalent

to show that
√

3 /∈ Q(
√

2) (see Corollary 23.3).

To show
√

3 /∈ Q(
√

2) assume for the sake of contradiction that
√

3 ∈ Q(
√

2). Then since 1,
√

2 give a

basis for Q(
√

2) over Q, we could write
√

3 = a
b +

c
d

√
2 with a, b, c, d ∈ Z, and b, d 6= 0. Clearly c 6= 0,

since otherwise
√

3 would be rational, which we know is not the case. On the other hand, I claim that

c 6= 0, either. Otherwise, squaring both sides we would have 3 = c2

d2 2, or, rearranging, 3d2 = 2c2; but the

left hand side has an even number of factors of 2, while the right hand side has an odd number of factors

of 2, giving a contradiction. Thus we may assume a, c 6= 0. Squaring both sides of
√

3 = a
b +

c
d

√
2 gives

3 =
(

a2

b2 +
2c2

d2

)
+ 2 ac

bd

√
2, but since a, c are assumed not to be zero, it would follow that

√
2 is rational,

giving a contradiction. Thus
√

3 /∈ Q(
√

2).

For the degree of the extension Q(
√

2,
√

3)/Q, we then conclude (Theorem 31.4) that

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2) : Q] = 2 · 2 = 4.

For a basis, we can use the elements 1 · 1, 1 ·
√

3,
√

2 · 1,
√

2
√

3 (see the proof of Theorem 31.4; we

are taking the product of each element of the basis for Q(
√

2)/Q with each element of the basis for

Q(
√

2,
√

3)/Q(
√

2)). In other words, a basis for the field extension Q(
√

2,
√

3) over Q is 1,
√

2,
√

3,
√

6.
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