In-Class Final

Abstract Algebra 1

MATH 3140

Summer 2021

Friday July 2, 2021

NAME: ____

PRACTICE EXAM

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

- You must have your **camera** on, and a working **microphone**, for the **duration of the exam** in order to receive credit.
- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 60 minutes to complete the exam.

- 1. Consider the dihedral group D_n , with $n \ge 3$. Recall the notation we have been using: D_n has identity element *I*, and is generated by elements *R* and *D*, satisfying the relations $R^n = D^2 = I$ and $RD = DR^{-1}$. Consider the cyclic subgroup $\langle R^2 \rangle$.
 - (a) (10 points) Show that $\langle R^2 \rangle$ is a normal subgroup of D_n .

(b) (10 points) *Find the order of the group* $D_n/\langle R^2 \rangle$. [*Hint:* this may depend on the parity of *n*.]

1
20 points

2. • Consider the map (or "function") of polynomial rings

$$\phi: \mathbb{Z}[x] \longrightarrow \mathbb{Z}_4[x]$$
$$\sum_{k=0}^n a_k x^k \mapsto \sum_{k=0}^n [a_k] x^k,$$

where $[a_k] = a_k \pmod{4}$.

(a) (10 points) Show that ϕ is a homomorphism of rings.

(b) (10 points) *Describe the kernel of φ*. (Do not just write down the definition; you need to describe an explicit subset of Z[x].)

2	
20 points	

3. (20 points) • Show that for a prime p, the polynomial $x^p + a \in \mathbb{Z}_p[x]$ is not irreducible for any $a \in \mathbb{Z}_p$.

3
20 points

4. (20 points) • *Prove that the algebraic closure of* \mathbb{Q} *in* \mathbb{C} *is not a finite extension of* \mathbb{Q} *.*

4
20 points

5. (20 points) • Find the degree and a basis for the field extension $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} .

5 20 points