
Exercise 4.31

Abstract Algebra 1
MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 4.31 from Fraleigh [Fra03, §4]:

Exercise 4.31. If ∗ is a binary operation on a set S, an element x of S is an idempotent for ∗ if

x ∗ x = x. Prove that a group has exactly one idempotent element.

Solution. Suppose that 〈S, ∗〉 is a group with identity element e. By the definition of the identity

element, we have e ∗ e = e, so that e is an idempotent element. Now suppose that x ∈ S is an

arbitrary idempotent element; i.e.,

x ∗ x = x.

We may multiply both sides on the right by x−1 to obtain

(x ∗ x) ∗ x−1 = x ∗ x−1.

Using the associative property, we may write this as

x ∗ (x ∗ x−1) = x ∗ x−1.

From the definition of an inverse element, this gives us

x ∗ e = e.

Using the definition of the identity, we have

x = e.

Thus the group has exactly one idempotent element, namely, the identity element. �
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