Exercise 3.26

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 3.26 from Fraleigh [Fra03, §3]:

Exercise 3.26. Recall that if $f : A \to B$ is a one-to-one function mapping A onto B, then the element $f^{-1}(b)$ is the unique element $a \in A$ such that f(a) = b. Prove that if $\phi : S \to S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$, then ϕ^{-1} is an isomorphism of $\langle S', *' \rangle$ with $\langle S, * \rangle$.

For this exercise, we will want to use the following basic fact about inverse functions:

Lemma 0.1. Let A and B be sets, and let $f : A \to B$ be a function. Then f is one-to-one and onto if and only if there exists a function $f^{-1} : B \to A$ such that for all $a \in A$ we have $f^{-1}(f(a)) = a$, and for all $b \in B$ we have $f(f^{-1}(b)) = b$.

Proof. This is a fact you should know from MATH 2001, and it would be a good exercise, to check that you recall the material from that class, to prove this lemma. Recall that f^{-1} is called the inverse function of f.

Solution to Exercise 3.26. Let (S, *) and (S', *') be binary structures, and let $\phi : S \to S'$ be an isomorphism of (S, *) with (S', *'). By definition (see [Fra03, Def. 3.7, p.29]), $\phi : S \to S'$ is a one-to-one function mapping *S* onto *S'*, such that for all $x, y \in S$:

$$\phi(x * y) = \phi(x) *' \phi(y).$$

As indicated in the statement of the problem (i.e., using Lemma 0.1), since ϕ is a one-to-one and onto fuction, ϕ has an inverse

$$\phi^{-1}: S' \longrightarrow S.$$

Date: August 8, 2021.

Note that in particular, for any $z' \in S'$, we have (see Lemma 0.1)

(0.1)
$$\phi(\phi^{-1}(z')) = z'$$

The problem asks us to show that $\phi^{-1} : S' \to S$ is an isomorphism of $\langle S', *' \rangle$ with $\langle S, * \rangle$. In other words, it asks us to show that ϕ^{-1} is a one-to-one function mapping S' onto S, such that for all $x', y' \in S'$:

$$\phi^{-1}(x' *' y') = \phi^{-1}(x') * \phi^{-1}(y').$$

We already know that ϕ^{-1} is a one-to-one function mapping S' onto S (for instance, apply Lemma 0.1 to $\phi^{-1} : S' \to S$, and use ϕ to arrive at the implication (\Leftarrow) of the lemma). So all that remains is to check that for all $x', y' \in S'$:

(0.2)
$$\phi^{-1}(x' *' y') = \phi^{-1}(x') * \phi^{-1}(y').$$

So, let $x', y' \in S'$. Since ϕ is one-to-one, in order to show that (0.2) holds, it suffices to show that

(0.3)
$$\phi(\phi^{-1}(x'*'y')) = \phi(\phi^{-1}(x')*\phi^{-1}(y')).$$

For this, considering first the left hand side, and then the right hand side, we have that

$$\phi(\phi^{-1}(x' *' y')) = x' *' y'$$
((0.1), or Lemma 0.1)
$$\phi(\phi^{-1}(x') * \phi^{-1}(y')) = \phi(\phi^{-1}(x')) *' \phi(\phi^{-1}(y'))$$
(\$\phi\$ is an isomorphism\$)
$$= x' *' y'$$
((0.1), or Lemma 0.1)

Thus, both sides of (0.3) are equal, and so we have shown that ϕ is an isomorphism of $\langle S', *' \rangle$ with $\langle S, * \rangle$.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu