Exercise 30.4

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 30.4 from Fraleigh [Fra03, §30]:

Exercise 30.4. Give a basis for the vector space $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} .

Solution. A basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} is given by $\{1, \sqrt{2}\}$. This follows from [Fra03, Theorem 30.23]. Indeed, I claim that $\operatorname{irr}(\sqrt{2}, \mathbb{Q}) = x^2 - 2$. Certainly $\sqrt{2}$ is a root of $x^2 - 2$, and one can see that $x^2 - 2$ is irreducible, since if it factored, it would factor into linear terms, and then there would be a rational square root of 2, which we know is not the case. Thus deg $(\sqrt{2}, \mathbb{Q}) = 2$, and [Fra03, Theorem 30.23] implies that $\{1, \sqrt{2}\}$ is a basis.

Remark 0.1. Here is a direct argument for the exercise, which recapitulates the proof of [Fra03, Theorem 30.23] in the situation of this exercise. From [Fra03, Case I, p.270], we know that the evaluation homomorphism $\phi_{\sqrt{2}}$ gives an isomorphism of Q[x]/ $\langle irr(\sqrt{2}, Q) \rangle$ with Q($\sqrt{2}$). Therefore, since $irr(\sqrt{2}, Q) = x^2 - 2$ (as explained above), the evaluation homomorphism $\phi_{\sqrt{2}}$ gives an isomorphism

(0.1)
$$\frac{\mathbb{Q}[x]}{\langle x^2 - 2 \rangle} \xrightarrow{\sim} \mathbb{Q}(\sqrt{2}).$$

Now I claim the classes of 1 and *x* form a basis for $\mathbb{Q}[x]/\langle x^2 - 2 \rangle$. First, the classes of 1 and *x* span $\mathbb{Q}[x]/\langle x^2 - 2 \rangle$, since the class of any polynomial $a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$ is equal to the class of $a_0 + a_1x + 2a_2 + 2a_3x + 2^2a_4 + \cdots = (a_0 + 2a_2 + 2^2a_4 + \cdots) \cdot 1 + (a_1 + 2a_3 + 2^2a_5 + \cdots) \cdot x$.

Second, the classes of 1 and *x* are linearly independent in $\mathbb{Q}[x]/\langle x^2 - 2 \rangle$, since if there were a linear relation $a \cdot 1 + b \cdot x = 0$ in $\mathbb{Q}[x]/\langle x^2 - 2 \rangle$, then a + bx would be in the kernel of the evaluation map $\phi_{\sqrt{2}}$: $\mathbb{Q}[x] \rightarrow \mathbb{Q}(\sqrt{2})$, contradicting the fact that $\operatorname{irr}(\sqrt{2}, \mathbb{Q})$ is the monic polynomial of minimal degree in the kernel of the evaluation map.

Date: August 8, 2021.

Since the classes of 1 and *x* form a basis for $\mathbb{Q}[x]/\langle x^2 - 2 \rangle$, their images under the isomorphism (0.1) form a basis for $\mathbb{Q}(\sqrt{2})$. Their images are 1 and $\sqrt{2}$ respectively, and so 1 and $\sqrt{2}$ form a basis for $\mathbb{Q}(\sqrt{2})$.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu