Exercise 13.47

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 13.47 from Fraleigh [Fra03, §13]:

Exercise 13.47. Show that any group homomorphism ϕ : $G \rightarrow G'$ where |G| is a prime must either be the trivial homomorphism or a one-to-one map.

Solution. Let ϕ : $G \to G'$ be a group homomorphism where |G| is a prime. Let $e' \in G'$ be the identity element. The problem asks us to show that $\phi(g) = e'$ for all $g \in G$, or that ϕ is one-to-one.

To prove this, let us consider ker ϕ . The kernel of a homomorphism is a subgroup of *G*, and, since |G| is finite, $|\ker \phi|$ divides |G| (Theorem of Lagrange [Fra03, p.100]). By virtue of the fact that |G| is prime, it follows that either $|\ker \phi| = 1$ or $|\ker \phi| = |G|$. That is, either ker $\phi = \{e\}$, where *e* is the identity element of *G*, or ker $\phi = G$.

In the former case (i.e., ker $\phi = \{e\}$), ϕ is one-to-one (a homomorphism is one-to-one if and only if the kernel is trivial [Fra03, Corollary 13.18, p.131]). In the latter case, $\phi(g) = e'$ for all $g \in G$, from the definition of the kernel.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu