Exercise 9.18

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 9.18 from Fraleigh [Fra03, §9]:

Exercise 9.18. Find the maximum possible order for an element of S_{15} .

Solution. We claim that the maximum possible order for an element of S_{15} is 105.

To see this recall that any element $\sigma \in S_{15}$ can be written as a product of disjoint cycles. If $\sigma_1, \ldots, \sigma_r$ are disjoint cycles, then $|\sigma_1 \cdots \sigma_r| = \text{lcm}(|\sigma_1|, \ldots, |\sigma_r|)$. In addition, any element $\sigma \in S_{15}$ of maximum possible order can be written as a product of disjoint cycles $\sigma_1 \cdots \sigma_r$ where

$$\sum_{i=1}^{r} |\sigma_i| = 15$$

In other words, among all partitions (d_1, \ldots, d_r) of 15 (i.e., natural numbers $1 \le d_1 \le \cdots \le d_r \le 15$ with $\sum_{i=1}^r d_i = 15$), we want to know what is the maximum of $lcm(d_1, \ldots, d_r)$.

We claim that the maximum is 105, corresponding to the partition (3, 5, 7), which for instance would correspond to the element

$$\sigma = (1, 2, 3)(4, 5, 6, 7, 8)(9, 10, 11, 12, 13, 14, 15) \in S_{15}.$$

We will argue by considering the maximal element of the partition, d_r . For instance, if $d_r = 15$, then the partition is (15), and then the least common multiple is 15. If $d_r = 14$, then the partition is (1,14) and then the least common multiple is 14. If $d_r = 13$, then the partition is either (2,13) or (1,1,13), and then the maximum of the least common multiples is 26. If $d_r = 12$, then the partition is (3,12), or (1,2,12), or (1,1,1,12), and the maximum of the least common multiples is 12. If $d_r = 11$, then we have (4,11), or (1,3,11), or (1,1,2,11), or (1,1,1,1,11), in which case the maximum is 44. If $d_r = 10$, then we have (5,10), or (1,4,10), or (2,3,10), or (1,1,3,10), or, (1,1,1,2,10), or (1,1,1,1,10), in which case the maximum is 30. If $d_r = 9$, then we have $\overline{Date: October 5, 2021}$.

Sebastian Casalaina	Exercise 9.18	Page 2
(6,9), or (1,5,9), or (2,4,9), or	(1,1,4,9), or (1,2,3,9), or (1,1,1,3,9),	or (2,2,2,9), or (1,1,2,2,9),
or (1, 1, 1, 1, 2, 9), or (1, 1, 1, 1, 1	1, 1, 9), in which case the maximum is	s 45. Arguing similarly for

 $d_r = 8, 7, 6, 5, 4, 3, 2, 1$, gives the assertion.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu