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1

10 points

1. Find the determinant of each of the following matrices.

1.(a). A =

 4 −1 1
−1 −2 0

0 1 0



1.(b). B =


0 1 0 0 0 π
1 0 e −4 8 3−5

0 0 0 1 0 0
0 5 1 0 2 104

0 0 0 3 0 1
0 0 0 −1 2 0



SOLUTION

(a) We have det A = −1 The fastest way to see this may be to expand off of the third

column; however, to use the standard method, we have

det A = (4)[(−2)(0)− (0)(1)]− (−1)[(−1)(0)− (0)(0)] + (1)[(−1)(1)− (−2)(0)] = −1.

(b) We have det B = −2 We use row operations:

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 π
1 0 e −4 8 3−5

0 0 0 1 0 0
0 5 1 0 2 104

0 0 0 3 0 1
0 0 0 −1 2 0

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 e −4 8 3−5

0 1 0 0 0 π
0 5 1 0 2 104

0 0 0 1 0 0
0 0 0 3 0 1
0 0 0 −1 2 0

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 e −4 8 3−5

0 1 0 0 0 π
0 0 1 0 2 104 − 5π
0 0 0 1 0 0
0 0 0 3 0 1
0 0 0 −1 2 0

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 e −4 8 3−5

0 1 0 0 0 π
0 0 1 0 2 104 − 5π
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 2 0

∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)3

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 e −4 8 3−5

0 1 0 0 0 π
0 0 1 0 2 104 − 5π
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= −2
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2

10 points

2. Let V = R[x] be the vector space of real polynomial functions. Let

D : V → V

be the derivative map; i.e. D(p) = p′ for all p ∈ V. Let

E : V → V

be the integration map that sends a polynomial p to the polynomial q given by q(x) =∫ x

0
p(t)dt, for all x ∈ R. It is a fact that D and E are linear maps.

2.(a). Show that D is surjective, but not injective.

2.(b). Show that E is injective, but not surjective.

SOLUTION

We will show first that (ED)(p) = p − p(0), and (DE)(p) = p (we will only use the
latter). We have

((ED)(p))(x) = (E(D(p)))(x)

=
∫ x

0
D(p)(t)dt =

∫ x

0
p′(t)dt

= p(x)− p(0)
((DE)(p))(x) = (D(E(p)))(x)

=
d

dx
(E(p)(x))

=
d

dx

∫ x

0
p(t)dt

= p(x).

(a) Since DE : V → V is the identity, and in particular is surjective, we must have that
D is surjective (more directly, we can prove the surjectivity of D by observing that every
polynomial has an anti-derivative that is a polynomial). On the other hand, D is not
injective, since D(p) = 0 for every constant polynomial p.

(a) Since DE : V → V is the identity, and in particular is injective, we must have that E
is injective (more directly, we can prove the injectivity of E by observing that every poly-
nomial has an anti-derivative that is a polynomial of degree at least 1, and arguing from
there). On the other hand, E is not surjective, since, for instance, there is no polynomial p
such that

∫ x
0 p(t)dt = 1 for all x.
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3

10 points

3. Suppose we have a two state Markov chain with stochastic matrix

P =

(
0.1 0.5
0.9 0.5

)
Given the probability vector v =

(
0.2
0.8

)
, find lim

n→∞
Pnv.

SOLUTION

The solution is lim
n→∞

Pnv =

(
5/14
9/14

)
Indeed, since P is a stochastic matrix, given any probability vector v, we have lim

n→∞
Pnv is

the unique probability vector that is an eigenvector with eigenvalue 1. So to obtain the
solution, we first find an eigenvector with eigenvalue 1. For this, we are trying to find the
kernel of

1 · I − P =

(
1 0
0 1

)
−
(

0.1 0.5
0.9 0.5

)
=

(
0.9 −0.5
−0.9 0.5

)
We put the matrix in reduced row echelon form:(

1 −5/9
0 0

)
and then we augment the matrix: (

1 −5/9
0 −1

)
This tells us that

(
−5/9
−1

)
, or more conveniently,

(
5
9

)
, gives a basis for the λ = 1

eigenspace. The corresponding probability vector is
(

5/14
9/14

)
.
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4

10 points

4. Consider the following matrix

A =

 2 −1 1
0 3 −1
2 1 3


4.(a). Find the characteristic polynomial pA(t) of A.

4.(b). Find the eigenvalues of A.

4.(c). Find an orthonormal basis for each eigenspace of A in R3.

4.(d). Is A diagonalizable? If so, find a matrix S ∈ M3×3(R) so that S−1AS is diagonal. If not,
explain.

4.(e). Is A diagonalizable with orthogonal matrices? If so, find an orthogonal matrix U ∈
M3×3(R) so that UT AU is diagonal. If not, explain.

SOLUTION

(a) We have

pA(t) =

∣∣∣∣∣∣
t− 2 1 −1

0 t− 3 1
−2 −1 t− 3

∣∣∣∣∣∣
= (t− 2)[(t− 3)2 − (1)(−1)]− (1)[0− (1)(−2)] + (−1)[0− (t− 3)(−2)]

= (t− 2)[t2 − 6t + 10]− 2 + (t− 3)(−2)︸ ︷︷ ︸
−2t+6

= (t3 − 6tt + 10t− 2t2 + 12t− 20)− 2 + (6− 2t)

= t3 − 8t2 + 20t− 16.

In other words, the solution is:

pA(t) = t3 − 8t2 + 20t− 16.

As a quick partial check of the solution, observe that

tr(A) = 8

det A =

∣∣∣∣∣∣
2 −1 1
0 3 −1
2 1 3

∣∣∣∣∣∣ =
∣∣∣∣∣∣

2 −1 1
0 3 −1
0 2 2

∣∣∣∣∣∣ = 2(6 + 2) = 16.

confirming the computation of the coefficients of t2 and t0.
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(b) One can easily check that

pA(2) = 23 − 8 · 22 + 20 · 2− 16 = 8− 32 + 40− 16 = 48− 48 = 0.

Thus we have
pA(t) = (t− 2)(t2 − 6t + 8) = (t− 2)(t− 2)(t− 4).

Thus the eigenvalues are

λ = 2, 4.

(c) To find the λ = 2 eigenspace E2, we compute

E2 := ker(2I − A) = ker

 0 1 −1
0 −1 1
−2 −1 −1



= ker

 2 1 1
0 1 −1
0 −1 1

 = ker

 2 1 1
0 1 −1
0 0 0

 = ker

 2 0 2
0 1 −1
0 0 0


= ker

 1 0 1
0 1 −1
0 0 0


We add rows, and get the matrix  1 0 1

0 1 −1
0 0 −1


Thus we have

E2 =

α

 1
−1
−1

 : α ∈ R


Now we compute the λ = 4 eigenspace E4. We have

E4 = ker

 2 1 −1
0 1 1
−2 −1 1

 = ker

 2 1 −1
0 1 1
0 0 0

 = ker

 2 0 −2
0 1 1
0 0 0



= ker

 1 0 −1
0 1 1
0 0 0


This gives us the matrix  1 0 −1

0 1 1
0 0 −1


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Thus we have

E4 =

α

 −1
1
−1

 : α ∈ R


Thus the solution to the problem is:

The eigenspaces for A are E2 and E4, and we have that

 1
−1
−1

 is a basis for E2 and

 −1
1
−1

 is a basis for E4.

Note that we can easily double check that the given basis elements are eigenvectors. 2 −1 1
0 3 −1
2 1 3

 1
−1
−1

 =

 2 + 1− 1
−3 + 1

2− 1− 3

 =

 2
−2
−2


 2 −1 1

0 3 −1
2 1 3

 −1
1
−1

 =

 −2− 1− 1
3 + 1

−2 + 1− 3

 =

 −4
4
−4



(d) No. A is not diagonalizable since R3 does not admit a basis of eigenvectors for A.

(e) No. A is not diagonalizable with orthogonal matrices either, since it is not even

diagonalizable.
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5

10 points

5. Consider the following matrix:

B =


0 1 0 2 −1 0
−1 0 2 1 1 1

0 0 2 0 −2 0
0 0 0 1 4 3
0 0 0 2 8 6
0 0 0 3 −3 0


5.(a). What is the sum of the roots of the characteristic polynomial of B?

5.(b). What is the product of the roots of the characteristic polynomial of B?

5.(c). Are the roots of the characteristic polynomial of B real?

SOLUTION

(a) The sum of the roots of the characteristic polynomial of B is equal to the trace of B. So
we have

tr B = 0 + 0 + 2 + 1 + 8 + 0 = 11.

So the answer is 11 .

(b) The product of the roots of the characteristic polynomial of B is equal to the determi-
nant of B (since it is a 6× 6 matrix). Since B is block-upper-triangular, we could compute
the determinant that way; but the fourth and fifth rows are linearly dependent, so the

determinant is 0. Thus the answer is 0 .

(c) No. We have

PB(t) =

∣∣∣∣∣∣∣∣∣∣∣∣

t −1 0 −2 1 0
1 t −2 −1 −1 −1
0 0 t− 2 0 2 0
0 0 0 t− 1 −4 −3
0 0 0 −2 t− 8 −6
0 0 0 −3 3 t

∣∣∣∣∣∣∣∣∣∣∣∣
= (t2 + 1)p(t)

where p(t) is the determinant of the lower right block in the matrix above. Thus ±i are
roots of pB(t).
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6

10 points

6. Consider the two dimensional discrete dynamical system

xk+1 = Axk

where

A =

(
1.7 0.3
1.2 0.8

)

6.(a). Is the origin an attractor, repeller, or saddle point?

6.(b). Find the directions of greatest attraction or repulsion.

SOLUTION

(a) The origin is a saddle point.

To see this, we compute that the characteristic polynomial is

pA(t) = det
(

t− 1.7 −0.3
−1.2 t− 0.8

)
= (t2 − 2.5t + 1.36)− (.36) = t2 − 2.5t + 1

= (t− 2)(t− 1
2
)

Thus the eigenvalues are λ = 1
2 , 2. Since 0 < 1

2 < 1 and 1 < 2, we see that the origin is a
saddle point.

(b) We have that the line spanned by
(

1
−4

)
is the direction of greatest attraction,

and the line spanned by
(

1
1

)
is the direction of greatest repulsion.

To deduce this, we find the eigenspaces. We start with the λ = 1
2 -eigenspace, E1/2, which

is the kernel of 1
2 I − A:

1
2

I − A =

(
−1.2 −0.3
−1.2 −0.3

)
7→
(

12 3
0 0

)
7→
(

1 1/4
0 0

)
7→
(

1 1/4
0 −1

)
Thus

(
1
−4

)
is a basis for the 1

2 -eigenspace E1/2.

We now compute the λ = 2-eigenspace, E2, which is the kernel of 2I − A:

2I − A =

(
0.3 −0.3
−1.2 1.2

)
7→
(

1 −1
0 0

)
7→
(

1 −1
0 −1

)
10



Thus
(

1
1

)
is a basis for the 2-eigenspace E2.

In conclusion, the line spanned by
(

1
−4

)
is the direction of greatest attraction, and

the line spanned by
(

1
1

)
is the direction of greatest repulsion.
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7

10 points7. Let x1 =


1
1
0
1

, x2 =


0
1
1
0

, x3 =


0
0
1
1

, and x4 =


1
2
0
0

.

Find an orthonormal basis for the vector subspace of R4 spanned by x1, x2, x3, and x4.

SOLUTION

An orthonormal basis is given by

u1 =
1√
3


1
1
0
1

 , u2 =
1√
15


−1

2
3
−1

 , u3 =
1√
35


1
3
−3
−4


Note, that before we get started, it is a good idea to check whether the vectors x1, . . . , x4

are linearly dependent, since otherwise, we could take the standard basis in R4 as a so-
lution, and be done immediately. We can check linear dependence via row reduction
of the associated 4× 4 matrix, or by simply noting in this case that x4 = x1 + x2 − x3.
Thus x1, . . . , x4 are linearly dependent, so we cannot simply take the standard basis in
R4, and will have to use Gram–Schmidt instead. As a small benefit, we have found that
the span of x1, . . . , x4 is the same as the span of x1, x2, x3, and so we will simply apply
Gram–Schmidt to x1, x2, x3.

We start by finding an orthogonal basis. We have

y1 = x1 =


1
1
0
1



y2 = x2 −
x2.y1

y1.y1
y1 =


0
1
1
0

− 1
3


1
1
0
1

 =


−1/3

2/3
1

−1/3

 ∼

−1

2
3
−1


For simplicity, we will take

y2 =


−1

2
3
−1


12



We have

y3 = x3 −
x3.y1

y1.y1
y1 −

x3.y2

y2.y2
y1 =


0
0
1
1

− 1
3


1
1
0
1

− 2
15


−1

2
3
−1

 =

=


0
0
1
1

− 5
15


1
1
0
1

− 2
15


−1

2
3
−1

 =


−3/15
−9/15

9/15
12/15

 ∼


1
3
−3
−4


Again for simplicity we take

y3 =


1
3
−3
−4


Therefore, an orthogonal basis for the span of x1, . . . , x4 is given by

y1 =


1
1
0
1

 , y2 =


−1

2
3
−1

 , y3 =


1
3
−3
−4


Consequently, an orthonormal basis is given by

u1 =
1√
3


1
1
0
1

 , u2 =
1√
15


−1

2
3
−1

 , u3 =
1√
35


1
3
−3
−4



Note that as a quick check, we have y1 = x1, y2 = −x1 + 3x2, y3 = x1 + 2x2 − 5x3.
So y1, y2, y3 are all in the span of x1, x2, x3. And one can check quickly that they are
orthogonal.
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8

10 points

8. Find the equation y = β0 + β1x of the line that best fits the given data points,
as a least squares model: [

x
y

]
:

[
−1

0

]
,
[

0
1

]
,
[

1
2

]
,
[

2
1

]

SOLUTION

The best fit line is

y =
4
5
+

2
5

x

To find this, we have the matrices:

Y =


0
1
2
1

 , X =


1 −1
1 0
1 1
1 2

 , β =

[
β0
β1

]
,

The best fit line is given by β satisfying

XTXβ = XTY

or, since ker X = 0,
β = (XTX)−1XTY.

Using this latter formulation, we have

β =

[ 1 1 1 1
−1 0 1 2

] 
1 −1
1 0
1 1
1 2



−1 [

1 1 1 1
−1 0 1 2

] 
0
1
2
1


=

([
4 2
2 6

])−1 [ 4
4

]
=

1
20

[
6 −2
−2 4

] [
4
4

]
=

1
20

[
16
8

]
=

[
4/5
2/5

]
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9

10 points9. TRUE or FALSE. You do not need to justify your answer.

9.(a). Suppose A and B are invertible n× n matrices, and that AB = BA.
Then A−1B−1 = B−1A−1.
T F TRUE: (AB)−1 = B−1A−1 and (BA)−1 = A−1B−1.

9.(b). Let f : V → V be a linear map of a vector space to itself. If f is surjective, then f is
an isomorphism.
T F FALSE: We have seen examples where this fails. If V were assumed to be finite

dimensional, however, then this statement would be true.

9.(c). Suppose that P is an n× n matrix with positive entries, such that the column sums
are equal to 1. Then limn→∞ Pn exists.
T F TRUE: We have seen this in class.

9.(d). Suppose that T : V → V′ is a linear map of finite dimensional vector spaces. Then
dim V′ = dim ker(T) + dim Im(T).
T F FALSE: Take V = R and V′ = 0. (The Rank–Nullity Theorem states that

dim V = dim ker(T) + dim Im(T).)

9.(e). If an n × n matrix has n distinct eigenvalues, then it has n linearly independent
eigenvectors.
T F TRUE:We have seen this in class.

9.(f). If v is an eigenvector for an n× n matrix A with eigenvalue λ, and r 6= 0 is a real
number, then rv is an eigenvector for A with eigenvalue λ.
T F TRUE: A(rv) = rAv = rλv = λ(rv).

9.(g). Suppose that A ∈ Mn×n(R) is symmetric, and let v1, v2 ∈ Rn be eigenvectors with
corresponding eigenvalues λ1, λ2. If λ1 6= λ2, then v1 is orthogonal to v2.
T F TRUE: λ1(v1.v2) = Av1.v2 = v1.ATv2 = v1.Av2 = λ2(v1.v2); since λ1 6= λ2, we

must have v1.v2 = 0.

9.(h). Suppose that M is an n× n matrix and MN = 0 for some integer N > 1. Then M is
diagonalizable.

T F FALSE: The matrix M =

(
0 1
0 0

)
satisfies M2 = 0, but M is not diagonaliz-

able. (Note more generally that if M = S−1DS for a diagonal matrix D, then 0 = Mn =
S−1DnS if and only if D = 0 (and hence M = 0), since S and S−1 induce isomorphisms.)

9.(i). For an n× n matrix A, if det(cof A) = 0, then det A = 0.
15



T F TRUE: We know that A(cof A)T = (det A)I, so that 0 = (det A)(det(cof A)) =

(det A)(det((cof A)T)) = (det A)n.

9.(j). Let v, w ∈ Rn. If θ is the angle between v and w, then cos θ =
v.w

||v||||w|| .

T F TRUE: This was our definition of the angle between vectors.
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