§6.6 Part I: Work

(Created by Faan Tone Liu)

Key Points:

• $W = \text{Force} \times \text{Distance} = F \cdot d$

• Units	S:	F = Force	d = Distance	W = Work	
	Metric	$N = \frac{k_9 \cdot m}{5ec^2}$ (Newfords)	m (meters)	N·m OR J (Newton-meters) (Jo	oules)
	U.S. Units	lbs	ţ+	ft-lbs	243)

• Now, what if F is not constant?

$$W = \int_{a}^{b} F(x) dx$$

• Dealing with springs - Hooke's Law:

 $F = k_X$.

where x is the distance stretched or compressed past the natural (equilibrium) length, and k is the spring constant.

• Dealing with the force of gravity (metric system):

$$F = \mathbf{m} \cdot \mathbf{g}$$
,

where m is the mass of the object and $g = 9.8 \frac{\text{m}}{\text{sec}^2}$.

• Dealing with the force of graity (U.S. system):

$$F = \text{weight (in lbs)}.$$

Examples:

1. A box is slid 3 meters across a carpet against a force of kinetic friction of 45N. How much work is done?

Force is constant, so no calculus!

2. I am pushing my sister across a 10 foot room. She pushes back with increasing ferocity, with a force of $20 + \frac{x^2}{2}$ pounds, where x is how far I have pushed her. How much work do I do?

3. A 30-centimeter long spring with a spring constant of $k=120\frac{\rm N}{\rm m}$ is compressed to 20cm. Calculate the work done.

4. A force of 10 lbs is required to hold a spring stretched to 6 inches past its natural length. Calculate the work required to stretch it 8 inches past its natural length.

First, find k:

$$V = \int_{0}^{2/3} 20x \, dx$$

$$V = \int_{0}^{2/3} 20x \, dx$$

$$V = \int_{0}^{2/3} 4t$$

5. How much energy is required to hoist a 3-kilogram pumpkin 15 meters to the roof of the math building?

Force is constant, so no calculus!

$$F_g = m \cdot g = 3kg \cdot \frac{9.8 \frac{kg}{Sect}}{Sect} = 29.4 \frac{kgm}{Sect} = 29.4N$$

gravity

$$W = F_g \cdot d = 29.4N \cdot 15 m = 441 J$$

6. How much energy is required to carry a 44-lb stack of books up to the third floor of the math building? (30 ft.)

Force is constant, so no calculus!

$$W = F_5 \cdot d$$

$$= 44 \text{ lbs} \cdot 30 \text{ ft} = 1320 \text{ ft} \cdot \text{ lbs}$$

7. A 6-kg chain is 3 meters long. How much work is done lifting it from the ground until its lower end is 2 meters off of the ground?

Strategy: Chop into pieces of length dy and calculate work on each;

W_{Slice} = F_g · d
=
$$\frac{2 k_g}{m}$$
 · dy · $\frac{1}{2}$ + $\frac{1}{2}$ = $\frac{2(2+y)}{4y}$ dy
least of density stree of the chain

To find mass of Slice!

PM ass whole mass show length whole =
$$\frac{\text{Cough of }}{\text{Cough}} = \frac{?}{\text{dy}}$$

$$\frac{\text{Cokey}}{3m} = \frac{?}{\text{dy}}$$

$$\frac{?}{?} = 2\frac{k_{y}}{m} \text{dy}$$

8. How much work is done emptying a $2 \times 2 \times 3$ -ft rectangular tank? The water must be = 205.85 pumped to a point in the upper corner of the tank.

Strategy: Cut into slices of width by and calculate work done on a slice.

264

Mater weighs 62.4 lbs per ft³

9. A tub has the shape of the solid of revolution formed by rotating around the y-axis the portion of the curve $y = 2x^4$ that lies between x = 0 and x = 1. (Draw a picture.) How much work is done to empty the tank? All of the water must be pumped out of the top of the tank.

$$W_{\text{slice}} = F_g \cdot d$$

$$= M_{\text{slice}} \cdot g \cdot d$$

$$= M_{\text{slice}} \cdot g$$

= 9800 Tex (2-4) dy (Nm)
= 9800 Tex (2-4) dy (J)

