1. A salt brine tank has pure water flowing in at $10 \mathrm{~L} / \mathrm{min}$. The contents of the tank are mixed thoroughly and continuously. The brine flows out at $10 \mathrm{~L} / \mathrm{min}$. Initially, the tank contains 150 L of brine, at a concentration of $5 \mathrm{~g} / \mathrm{L}$. Follow the steps below to determine the concentration of brine after 30 minutes, and the limiting concentration of the brine.
(a) Let $S(t)=$ amount of salt in the tank at time t (in g)
and let $C(t)=$ concentration of salt in the tank at time t (in g / L)
$C(0)=$ \qquad
$S(0)=\quad 5 \mathrm{~g} / \mathrm{L} \times 150 \mathrm{~L}=750 \mathrm{~g}$
Write $C(t)$ in terms of $S(t)$:
$C(t)=\frac{S(t)}{150} \frac{\mathrm{~g} \text { of salt }}{\mathrm{L}}$
(b) Now write a differential equation describing how fast is the salt is leaving the tank.

Solution: $\frac{d S}{d t}=C(t) \frac{\mathrm{g} \text { of salt }}{\mathrm{L}} \times-10 \frac{\mathrm{~L}}{\min }=-\frac{S}{150} \cdot 10 \frac{\mathrm{~g} \text { of salt }}{\min }=-\frac{S}{15} \frac{\mathrm{~g} \text { of salt }}{\min }$
(c) Solve the initial value problem $\frac{d S}{d t}=-\frac{S}{15}, S(0)=750$.

Solution: Separate variables:
$\int \frac{d S}{S}=-\int \frac{1}{15} d t$
$\ln |S|=-\frac{1}{15} t+C$
$S=A e^{-\frac{t}{15}}$
Substitute $t=0, S=750$:
$S=750 e^{-\frac{t}{15}}$
(d) What is the concentration when $t=30$?

Solution: $\quad S(30)=750 e^{-2}$, so $C(30)=\frac{750 e^{-2}}{150}=\frac{5}{e^{2}}$
(e) What is the limiting concentration of the brine?

Solution: $\lim _{t \rightarrow \infty} 750 e^{-\frac{t}{15}}=0$. This makes sense because we are adding pure water into the brine, so it gets increasingly dilute. In the limit, there is nothing left.
2. As before, a salt brine tank contains 150 L of brine at a concentration of $5 \mathrm{~g} / \mathrm{L}$. But this time brine at a concentration of $2 \mathrm{~g} / \mathrm{L}$ is pumped into the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. The contents of the tank are mixed thoroughly and continuously and the brine flows out at 10 $\mathrm{L} / \mathrm{min}$. Follow the steps below to determine how long until the concentration is $3 \mathrm{~g} / \mathrm{L}$, and what the limiting concentration is.
(a) Again, let $S(t)=$ amount of salt in the tank at time t (in g)
and let $C(t)=$ concentration of salt in the tank at time $t($ in $\mathrm{g} / \mathrm{L})$
$C(0)=$ \qquad
$S(0)=$ \qquad
Write $C(t)$ in terms of $S(t)$:
$C(t)=\frac{S(t)}{150} \frac{\mathrm{~g}}{\mathrm{~L}}$
(b) How fast is salt entering the tank?

Solution: $2 \frac{\mathrm{~g}}{\mathrm{~L}} \times 10 \frac{\mathrm{~L}}{\min }=20 \frac{\mathrm{~g}}{\min }$
(c) How fast is salt leaving the tank?

Solution: $\quad C \frac{\mathrm{~g}}{\mathrm{~L}} \times 10 \frac{\mathrm{~L}}{\min }=\frac{S}{150} \times 10 \frac{\mathrm{~g}}{\min }=\frac{S}{15} \frac{\mathrm{~g}}{\min }$
(d) What is the net change of the salt in the tank, $\frac{d S}{d t}$?

Solution: $\frac{d S}{d t}=20-\frac{S}{15}$
(e) Solve the initial value problem $\frac{d S}{d t}=20-\frac{S}{15}, S(0)=750$.

Solution: Separate variables:
$\int \frac{1}{20-\frac{S}{15}} d S=\int d t$
$\int \frac{1}{300-S} d S=\int \frac{1}{15} d t$
$\int \frac{1}{S-300} d S=\int-\frac{1}{15} d t$
$\ln |S-300|=-\frac{1}{15} t+C$
$S-300=A e^{-\frac{1}{15} t}$
Now substitute $t=0, S=750$:
$A=450$
$S=450 e^{-\frac{1}{15} t}+300 \mathrm{~g}$
(f) When is $C(t)=3 \mathrm{~g} / \mathrm{L}$? What is the limiting concentration?

Solution: We are looking for when $S(t)=450$.
$150=450 e^{-\frac{1}{15} t}$, giving $\frac{1}{3}=e^{-\frac{1}{15} t}$, solving for t gives $t=15 \ln 3$.
Now $\lim _{t \rightarrow \infty}\left(450 e^{-\frac{1}{15} t}+300\right)=300$. So the limiting concentration is $C=\frac{300}{150}=2 \mathrm{~g} / \mathrm{L}$.

