- 1. A salt brine tank has pure water flowing in at 10 L/min. The contents of the tank are mixed thoroughly and continuously. The brine flows out at 10 L/min. Initially, the tank contains 150 L of brine, at a concentration of 5 g/L. Follow the steps below to determine the concentration of brine after 30 minutes, and the limiting concentration of the brine.
 - (a) Let S(t) = amount of salt in the tank at time t (in g) and let C(t) = concentration of salt in the tank at time t (in g/L) $C(0) = \underline{5 \text{ g/L}}$ $S(0) = \underline{5 \text{ g/L} \times 150\text{L} = 750\text{g}}$ Write C(t) in terms of S(t): $C(t) = \underline{\frac{S(t)}{150} \frac{\text{g of salt}}{\text{L}}}$
 - (b) Now write a differential equation describing how fast is the salt is leaving the tank.

Solution:
$$\frac{dS}{dt} = C(t) \frac{\text{g of salt}}{\text{L}} \times -10 \frac{\text{L}}{\text{min}} = -\frac{S}{150} \cdot 10 \frac{\text{g of salt}}{\text{min}} = -\frac{S}{15} \frac{\text{g of salt}}{\text{min}}$$

(c) Solve the initial value problem $\frac{dS}{dt} = -\frac{S}{15}$, S(0) = 750.

Solution: Separate variables:

$$\int \frac{dS}{S} = -\int \frac{1}{15} dt$$

$$\ln |S| = -\frac{1}{15}t + C$$

$$S = Ae^{-\frac{t}{15}}$$

Substitute t = 0, S = 750:

$$S = 750e^{-\frac{t}{15}}$$

(d) What is the concentration when t = 30?

Solution:
$$S(30) = 750e^{-2}$$
, so $C(30) = \frac{750e^{-2}}{150} = \frac{5}{e^2}$

(e) What is the limiting concentration of the brine?

Solution: $\lim_{t\to\infty} 750e^{-\frac{t}{15}} = 0$. This makes sense because we are adding pure water into the brine, so it gets increasingly dilute. In the limit, there is nothing left.

- 2. As before, a salt brine tank contains 150 L of brine at a concentration of 5 g/L. But this time brine at a concentration of 2g/L is pumped into the tank at a rate of 10 L/min. The contents of the tank are mixed thoroughly and continuously and the brine flows out at 10 L/min. Follow the steps below to determine how long until the concentration is 3 g/L, and what the limiting concentration is.
 - (a) Again, let S(t) = amount of salt in the tank at time t (in g) and let C(t) = concentration of salt in the tank at time t (in g/L) $C(0) = ___5 \text{ g/L}$

 $S(0) = 5 \text{ g/L} \times 150 \text{L} = 750 \text{g}$

Write C(t) in terms of S(t):

$$C(t) = \frac{S(t)}{150} \frac{g}{L}$$

(b) How fast is salt entering the tank?

Solution: $2\frac{g}{L} \times 10\frac{L}{\min} = 20\frac{g}{\min}$

(c) How fast is salt leaving the tank?

Solution:
$$C\frac{g}{L} \times 10\frac{L}{\min} = \frac{S}{150} \times 10\frac{g}{\min} = \frac{S}{15}\frac{g}{\min}$$

(d) What is the net change of the salt in the tank, $\frac{dS}{dt}$?

Solution:
$$\frac{dS}{dt} = 20 - \frac{S}{15}$$

(e) Solve the initial value problem $\frac{dS}{dt} = 20 - \frac{S}{15}$, S(0) = 750. Solution: Separate variables:

$$\int \frac{1}{20 - \frac{S}{15}} dS = \int dt$$

$$\int \frac{1}{300 - S} dS = \int \frac{1}{15} dt$$

$$\int \frac{1}{S - 300} dS = \int -\frac{1}{15} dt$$

$$\ln |S - 300| = -\frac{1}{15}t + C$$

$$S - 300 = Ae^{-\frac{1}{15}t}$$

Now substitute $t = 0, S = 750$:
$$A = 450$$

$$S = 450e^{-\frac{1}{15}t} + 300 \text{ g}$$

(f) When is C(t) = 3 g/L? What is the limiting concentration?

Solution: We are looking for when S(t) = 450. $150 = 450e^{-\frac{1}{15}t}$, giving $\frac{1}{3} = e^{-\frac{1}{15}t}$, solving for t gives $t = 15 \ln 3$. Now $\lim_{t\to\infty} (450e^{-\frac{1}{15}t} + 300) = 300$. So the limiting concentration is $C = \frac{300}{150} = 2$ g/L.