Worksheet Purpose: A few weeks ago we saw that a given improper integral converges if its integrand is less than the integrand of another integral known to converge. Similarly a given improper integral diverges if its integrand is greater than the integrand of another integral known to converge. In problems 1-7 you'll apply a similar strategy to determine if certain series converge or diverge. Additionally, in problems 8 and 9 you'll apply a different method (using limits) to determine if a series converges or diverges.

1. For each of the following situations, determine if $\sum_{n=1}^{\infty} c_{n}$ converges, diverges, or if one cannot tell without more information.
(a) $0 \leq c_{n} \leq \frac{1}{n}$ for all $n$, we can conclude that $\sum c_{n}$ $\qquad$
(b) $\frac{1}{n} \leq c_{n}$ for all $n$, we can conclude that $\sum c_{n}$ $\qquad$
(c) $0 \leq c_{n} \leq \frac{1}{n^{2}}$ for all $n$, we can conclude that $\sum c_{n}$ $\qquad$
(d) $\frac{1}{n^{2}} \leq c_{n}$ for all $n$, we can conclude that $\sum c_{n}$ $\qquad$
(e) $\frac{1}{n^{2}} \leq c_{n} \leq \frac{1}{n}$ for all $n$, we can conclude that $\sum c_{n}$ $\qquad$
2. Follow-up to problem 1: For each of the cases above where you needed more information, give (i) an example of a series that converges and (ii) an example of a series that diverges, both of which satisfy the given conditions.
3. Fill in the blanks:

The Comparison Test (also known as Term-size Comparison Test or Direct Comparison Test)
Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.

- If $\sum b_{n}$ $\qquad$ and $a_{n} \leq b_{n}$, then $\sum a_{n}$ also $\qquad$ .
- If $\sum b_{n}$ $\qquad$ and $a_{n} \geq b_{n}$, then $\sum a_{n}$ also $\qquad$ .

Note: in the above theorem and for the rest of this worksheet, we will use $\sum b_{n}$ to represent the series whose convergence/divergence we already know ( p -series or geometric), and $\sum a_{n}$ will represent the series we are trying to determine convergence/divergence of.

Now we'll practice using the Comparison Test:
4. Let $a_{n}=\frac{1}{2^{n}+n}$ and let $b_{n}=\left(\frac{1}{2}\right)^{n}$ for $n \geq 1$, both sequences with positive terms.
(a) Does $\sum_{n=1}^{\infty} b_{n}$ converge or diverge? Why?
(b) How do the size of the terms $a_{n}$ and $b_{n}$ compare?
(c) What can you conclude about $\sum_{n=1}^{\infty} \frac{1}{2^{n}+n}$ ?
5. Let $a_{n}=\frac{1}{n^{2}+n+1}$, a sequence with positive terms.

Consider the rate of growth of the denominator. This hints at a choice of:
$b_{n}=$ $\qquad$ , another positive term sequence.
(a) Does $\sum b_{n}$ converge or diverge? Why?
(b) How do the size of the terms $a_{n}$ and $b_{n}$ compare?
(c) What can you conclude about $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n+1}$ ?
6. Use the Comparison Test to determine if $\sum_{n=2}^{\infty} \frac{\sqrt{n^{4}+1}}{n^{3}-2}$ converges or diverges.
7. Use the Comparison test to determine if $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{\sqrt{n^{3}+n}}$ converges or diverges.
8. Disappointingly, sometimes the Comparison Test doesn't work like we wish it would. For example, let $a_{n}=\frac{1}{n^{2}-1}$ and $b_{n}=\frac{1}{n^{2}}$ for $n \geq 2$.
(a) By comparing the relative sizes of the terms of the two sequences, do we have enough information to determine if $\sum_{n=2}^{\infty} a_{n}=\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ converges or diverges?
(b) Show that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$.
(c) Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$, we know that $a_{n} \approx b_{n}$ for large values of $n$. Do you think that $\sum_{n=2}^{\infty} a_{n}=\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ must converge?

When we have chosen a good series to compare to, but the inequalities don't work in our favor, we use the Limit Comparison Test instead of the Comparison Test.

## The Limit Comparison Test

Suppose $a_{n}>0$ and $b_{n}>0$ for all $n$. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$, where $c$ is finite and $c>0$, then the two series $\sum a_{n}$ and $\sum b_{n}$ either both $\qquad$ or both $\qquad$ .

Now we'll practice using the Limit Comparison Test:
9. Determine if the series $\sum_{n=2}^{\infty} \frac{n^{3}-2 n}{n^{4}+3}$ converges or diverges.

