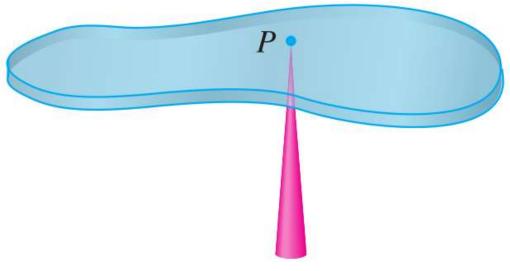
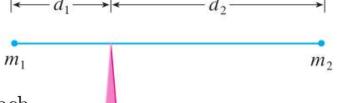
Daily Quiz

- Go to Socrative.com and complete the quiz.
- Room Name: HONG5824
- Use your full name.

- Have you tried balancing a frisbee on your fingertips?
- Where would you put your finger?
- The center of mass is where the object would be balanced horizontally.
- It is also where the net torque from gravity would be 0.



9/28/2018 Math 2300-014, Fall 2018, Jun Hong Page 2



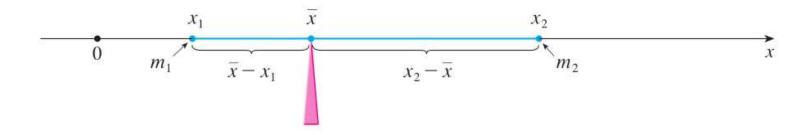
fulcrum

- Consider a seesaw as pictured.
- If two people are sitting on the opposite ends of the **balanced** seesaw each with mass m_1 and m_2 respectively, who has more mass?
- Archimedes discovered that in order for the seesaw to be balanced, the moment needs to be the same in magnitude:

$$M_1 = M_2$$

$$m_1 d_1 = m_2 d_2.$$

- Now suppose the two ends of the seesaw have x-coordinates x_1 and x_2 .
- Let's compute the x-coordinate of the fulcrum, the center of mass \bar{x} .



- The numbers m_1x_1 and m_2x_2 are called the **moments** of the masses m_1 and m_2 with respect to a coordinate system.
- Note that x_1 and x_2 can be negative. This means that moments can be positive or negative depending on your choice of coordinate system.

https://phet.colorado.edu/en/simulation/balancing-act

If we have a system of many particles with masses m_1, m_2, \dots, m_n located at the points x_1, x_2, \dots, x_n on the x-axis, then it can be shown similarly that the center of mass is located at

$$\overline{x} = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n} = \frac{\text{Sum of the moments}}{\text{Sum of the masses}}$$

The center of mass is located at $(\overline{x}, \overline{y})$. Let m be the total mass, $m = m_1 + m_2 + \cdots + m_n$.

moment of the system about the y-axis

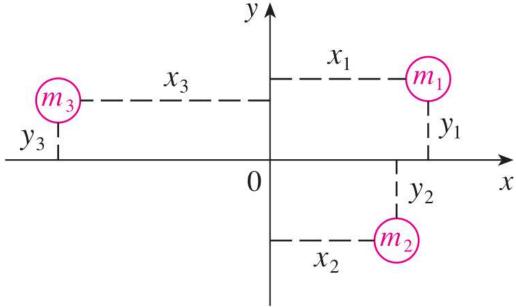
$$M_y = m_1 x_1 + m_2 x_2 + \dots + m_n x_n$$

$$\overline{x} = \frac{M_y}{m} = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n}$$

moment of the system about the x-axis

$$M_x = m_1 y_1 + m_2 y_2 + \dots + m_n y_n$$

$$\overline{y} = \frac{M_x}{m} = \frac{m_1 y_1 + m_2 y_2 + \dots + m_n y_n}{m_1 + m_2 + \dots + m_n}$$

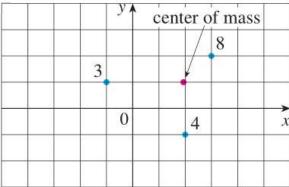


9/28/2018

Math 2300-014, Fall 2018, Jun Hong

Page 7

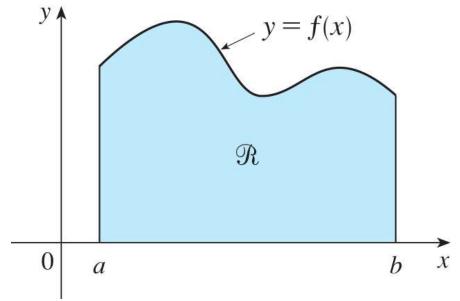
Find the moments and center of mass of the system of objects that have masses 3,4, and 8 at the points (-1,1),(2,-1), and (3,2).



Suppose that a region of uniform density ρ is bounded by a function y = f(x). How can we compute the center of mass of this region?

Suppose we take a rectangle of small width on the region \mathcal{R} . Intuitively, the center of mass of a rectangle is in the middle of the rectangle with coordinates (x, f(x)/2). Now we can pretend that the entire mass of the rectangle is located at (x, f(x)/2) and compute our moments with respect to the y and the x axis.

Firstly, the area of the rectangle is f(x)dx and so the mass of the rectangle is $\rho f(x)dx$.

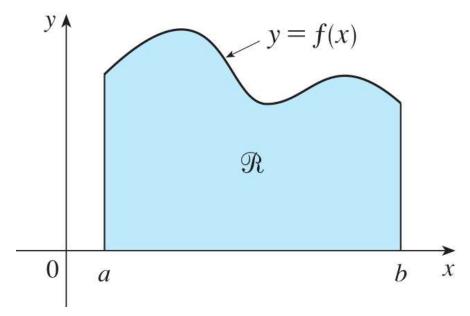


9/28/2018

Math 2300-014, Fall 2018, Jun Hong

Let \mathcal{M}_y denote the moment of the small rectangle about the y-axis and \mathcal{M}_x denote the moment of the small rectangle about the x-axis. Then

 $\mathcal{M}_y = \text{mass} \cdot \text{distance to the y-axis} = \rho f(x) dx \cdot x$ $\mathcal{M}_x = \text{mass} \cdot \text{distance to the x-axis} = \rho f(x) dx \cdot f(x)/2$



9/28/2018

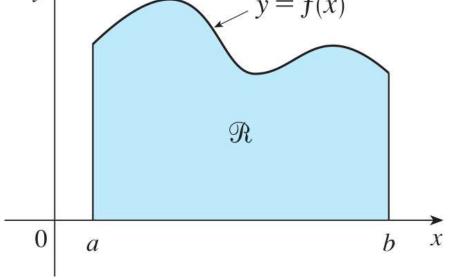
Math 2300-014, Fall 2018, Jun Hong

We have computed the moments of an arbitrary slice of rectangle on the region \mathcal{R} . Then the total moment of \mathcal{R} about the y-axis is obtained by adding up slices' moments.

$$M_y = \int \mathcal{M}_y = \rho \int_a^b x f(x) \ dx$$

Similarly, the moment of \mathcal{R} about the x-axis is

$$M_x = \int \mathcal{M}_x = \rho \int_a^b \frac{1}{2} [f(x)]^2 dx$$



Now let's compute the mass of the region \mathscr{R} . Since the region has a uniform density, the mass of \mathscr{R} is equal to the area of \mathscr{R} times the density ρ .

$$m = \rho A = \rho \int_{a}^{b} f(x)dx.$$

Formulas

Moment about the y-axis:

Moment about the x-axis:

$$M_y = \rho \int_a^b x f(x) dx$$

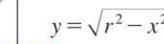
$$M_x = \rho \int_a^b \frac{1}{2} [f(x)]^2 dx$$

The center of mass of a region \mathcal{R} is located at $(\overline{x}, \overline{y})$ and

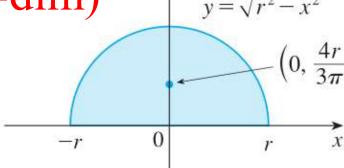
$$\overline{x} = \frac{M_y}{m} = \frac{\rho \int_a^b x f(x) dx}{\rho \int_a^b f(x) dx} = \frac{\int_a^b x f(x) dx}{\int_a^b f(x) dx} = \frac{1}{A} \int_a^b x f(x) dx$$

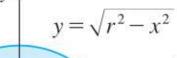
$$\overline{y} = \frac{M_x}{m} = \frac{\rho \int_a^b \frac{1}{2} [f(x)dx]^2}{\rho \int_a^b f(x)dx} = \frac{\int_a^b \frac{1}{2} [f(x)]^2 dx}{\int_a^b f(x)dx} = \frac{1}{A} \int_a^b \frac{1}{2} [f(x)]^2 dx$$

where
$$A = \int_a^b f(x)dx$$
.

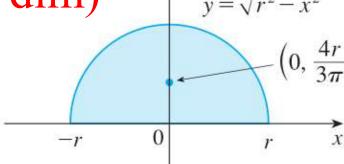


EXAMPLE 7 Find the center of mass of a semicircular plate of radius r.

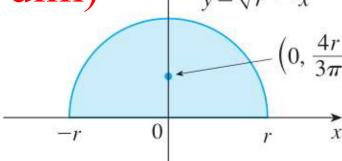




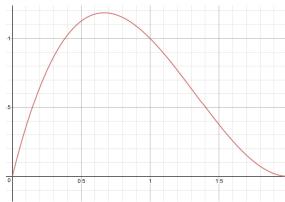
EXAMPLE 7 Find the center of mass of a semicircular plate of radius r.



EXAMPLE 7 Find the center of mass of a semicircular plate of radius r.



Find the center of mass of a region bounded by $y = x(x-2)^2$ and the x-axis.



Find the center of mass of a region bounded by $y = x(x-2)^2$ and the x-axis.

