
Exam 2 Review Handout

1. Sequences

A sequence {an} is a list of numbers written in a definite order:

a1, a2, a3, · · · , an, · · ·

Give an example or two:

Convergence and divergence of mathematical objects like sequences and series is about
whether the limit exists or doesn’t exist.

2. The Geometric Sequence

The sequence an = rn is convergent if −1 < r ≤ 1 and divergent for all other values
of r.

lim
n→∞

rn =

{
0 if −1 < r < 1
1 if r = 1

Give an example or two:



3. The Squeeze Theorem

If an ≤ bn ≤ cn and lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L.

If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Give an example or two:

1. Series

Given a sequence {an}, a finite sum

sm =
m∑

n=1

an = a1 + a2 + · · ·+ am

is called the m-th partial sum sm.

A series is an infinite sum of the sequence an, where

∞∑
n=1

an = lim
m→∞

m∑
n=1

an = lim
m→∞

sm = s

If the above limit exists, we say that the series converges and if the above limit doesn’t
exist, then we say that the series diverges.

Give an example or two:



A series
∞∑
n=1

an is called absolutely convergent if the series of absolute values
∞∑
n=1

|an|

is convergent.

Give an example or two:

A series
∞∑
n=1

an is called conditionally convergent if it is not absolutely convergent but

still converges.

Give an example or two:

If a series
∞∑
n=1

an is absolutely convergent, then it is convergent.

Give an example or two:



2. Geometric Series

The geometric series
∞∑
n=0

arn = a + ar + ar2 + · · ·

is convergent if |r| < 1 and its sum is

∞∑
n=0

arn =
a

1− r

If |r| ≥ 1, the geometric series is divergent.

Give an example or two:

3. Telescoping Sums

With some algebra, a series can be broken down into a sum of a difference

∞∑
n=1

(an − an+1)

where cancellation happens in the partial sum

m∑
n=1

an − an+1 = (a1 − a2) + (a2 − a3) + (a3 − a4) + · · ·+ (am − am+1) = a1 − am+1

Take the limit of the partial sums as m→∞ to determine convergence.

Give an example or two:



4. The p-series and the p-test

The p-series
∞∑
n=1

1

np
is convergent if p > 1 and divergent if p ≤ 1.

Give an example or two:

5. Divergence Test

If lim
n→∞

an does not exist or lim
n→∞

an 6= 0, then the series
∞∑
n=1

an is divergent.

Give an example or two:

6. Convergent series must have vanishing terms at infinity.

If the series
∞∑
n=1

an is convergent, then lim
n→∞

an = 0.

Give an example or two:



7. Integral Test

Let
∞∑
n=1

an be a series with positive terms and let f(n) = an. Suppose f is a continuous,

positive, decreasing function on [1,∞).

(a) If

∫ ∞
1

f(x)dx is convergent, then
∞∑
n=1

an converges.

(b) If

∫ ∞
1

f(x)dx is divergent, then
∞∑
n=1

an diverges.

Give an example or two:



8. Direct Comparison Test.

Suppose
∞∑
n=1

an and
∞∑
n=1

bn are series with 0 ≤ an ≤ bn for all n. Then

0 ≤
∞∑
n=1

an ≤
∞∑
n=1

bn

and

(a) If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

(b) If
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

To use either of the comparison tests, we need to compare our messy-looking series to
another series that we already understand. Below are the series that we understand so
far:

(a) A geometric series (a and r are constants)

∞∑
n=0

arn

(b) A p-series (p is a constant)
∞∑
n=1

1

np

(c) A series that looks similar to an improper integral that can be solved using u-sub or
other integration techniques

∞∑
n=2

1

n lnn
≈
∫ ∞
2

1

x lnx
dx

Give an example or two:



9. Limit Comparison Test

Suppose that
∑

an and
∑

bn are series with positive terms.

If lim
n→∞

an
bn

exists and is non-zero, then either both series converge or both series diverge.

Give an example or two:

10. Alternating Series Test

Suppose
∞∑
n=1

(−1)n−1 bn is an alternating series. If

(a) lim
n→∞

bn = 0 (vanishing at infinity)

(b) bn ≥ bn+1 (decreasing)

then the alternating series is convergent.

Give an example or two:



11. Ratio Test (Use this if you see a factorial in the sum)

Let L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣.
(a) If L < 1, then

∞∑
n=1

an is absolutely convergent.

(b) If L > 1, then
∞∑
n=1

an diverges.

(c) If L = 1, then the Ratio Test is inconclusive and we must use other testing methods.

Give an example or two:

8.3 Remainder Estimate for the Integral Test.

Suppose f(k) = ak, where f(x) is a continuous, positive decreasing function for x ≥ n and
∞∑
n=1

an is convergent. If Rn = s− sn where sn is the n-th partial sum, then

∫ ∞
n+1

f(x) dx ≤ Rn ≤
∫ ∞
n

f(x) dx.

Also,

sn +

∫ ∞
n+1

f(x) dx ≤ s ≤ sn +

∫ ∞
n

f(x) dx.

Give an example or two:



8.4 Alternating Series Estimation Theorem.

If
∞∑
n=1

(−1)n−1 bn = s is the sum of an alternating series that satisfies

(i) lim
k→∞

bk = 0 and (ii) bk ≥ bk+1

then |Rn|, the error for the n-th partial sum, is less than or equal to the (n + 1)-th term, bn+1.

|Rn| = |s− sn| ≤ bn+1.

Note that sn =
n∑

k=1

(−1)k−1bk. In other words, the error will be less than or equal to the next

term.

Give an example or two:


