Daily Quiz

- Go to Socrative.com and complete the quiz.
- Room Name: HONG5824
- Use your full name.

Reminders

- Take-home Quiz 2 is due in two weeks, October 19th.
- The second exam is on October 22nd.

Consider the **geometric sequence** $\{ar^n\}$. The series

$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + \cdots$$

is called the **geometric** series with common ratio r and initial value a.

The geometric series

$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + \cdots$$

is **convergent** if |r| < 1 and its sum is

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \quad |r| < 1$$

If $|r| \geq 1$, the geometric series is **divergent.**

Determine whether the series below converges or diverges. If it is convergent, find its sum.

$$\frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + \cdots$$

Determine whether the series below converges or diverges. If it is convergent, find its sum.

$$\frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + \cdots$$

Determine whether the series below converges or diverges. If it is convergent, find its sum.

$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

EXAMPLE 4 Expressing a repeating decimal as a rational number

Write the number $2.3\overline{17} = 2.3171717...$ as a ratio of integers.

EXAMPLE 4 Expressing a repeating decimal as a rational number

Write the number $2.\overline{317} = 2.\overline{3171717}$... as a ratio of integers.

EXAMPLE 4 Expressing a repeating decimal as a rational number

Write the number $2.\overline{317} = 2.3171717...$ as a ratio of integers.

Find the sum of the geometric series

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$$

Find the sum of the geometric series

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$$

Is the series $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ convergent or divergent?

For what values of x does the series $\sum_{n=0}^{\infty} \frac{(x+5)^n}{3^n}$ converge?

For what values of x does the series $\sum_{n=0}^{\infty} \frac{(x+5)^n}{3^n}$ converge?

8.2 Sums of Series

8 Theorem If Σa_n and Σb_n are convergent series, then so are the series Σca_n (where c is a constant), $\Sigma (a_n + b_n)$, and $\Sigma (a_n - b_n)$, and

(i)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

(ii)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

(iii)
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

8.2 Sums of Series

Find the sum of the series
$$\sum_{n=1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right)$$
.