Daily Quiz

- Go to Socrative.com and complete the quiz.
- Room Name: HONG5824
- Use your full name.

8.2 What can we do with sequences?

Let $\{a_n\}$ be a sequence. What can we do with sequences?

1. Infinite sums called **Series**

$$a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n$$

2. Infinite products

$$a_1 \cdot a_2 \cdot a_3 \cdot \dots = \prod_{n=1}^{\infty} a_n$$

8.2 Review of Sigma Notation

$$\sum_{k=1}^{n} a_k$$

8.2 Series

Definition. Given a sequence $\{a_k\}$, a <u>finite sum</u>

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n$$

is called the n-th partial sum s_n .

Series is an <u>infinite sum</u> of the sequence $\{a_k\}$,

$$\sum_{k=1}^{\infty} a_k$$

8.2 Series

Since infinity is not a number, we define the series as the limit of the partial sums:

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k$$

If the limit exists and is equal to a real number s, we say that the series **converges** and write

$$s = \sum_{k=1}^{\infty} a_k.$$

If the limit doesn't exist, then we say that the series is **divergent**.

8.2 Harmonic Series

EXAMPLE 7 Show that the **harmonic series**

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

is divergent.

8.2 Harmonic Series

Another way to see the divergence of the **harmonic series** is to compare the expanded form to another series that diverges.

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \cdots$$

$$> 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \cdots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$$

$$= \infty$$

Therefore $\sum_{n=1}^{\infty} \frac{1}{n} \ge \infty$ and the harmonic series **diverges**.

8.2 Telescoping Sum

Find the partial sum s_4 and show that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

8.2 Telescoping Sum

Find the partial sum s_4 and show that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

8.2 The Divergence Test

Theorem. If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$.

The Divergence Test.

If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

(WRONG) If $\lim_{n\to\infty} a_n = 0$, then the series $\sum_{n=1}^{\infty} a_n$ is convergent.

Counterexample:

$$\lim_{n \to \infty} \frac{1}{n} = 0 \quad \text{but} \quad \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

8.2 The Divergence Test

Using the Test for Divergence Show that the series $\sum_{n=1}^{\infty} \frac{n^2}{5n^2+4}$ diverges.

8.2 The Divergence Test

Note 1: A finite number of terms doesn't affect the convergence or divergence of a series. What matters is the **long-term** behavior, not the short term.

Note 2: The converse of Theorem 6 is not true in general. If $\lim_{n\to\infty} a_n = 0$, we cannot conclude that $\sum a_n$ is convergent. Observe that for the harmonic series $\sum 1/n$ we have $a_n = 1/n \to 0$ as $n \to \infty$, but we showed in Example 7 that $\sum 1/n$ is divergent.

Note 3: If we find that $\lim_{n\to\infty} a_n \neq 0$, we know that $\sum a_n$ is divergent. If we find that $\lim_{n\to\infty} a_n = 0$, we know *nothing* about the convergence or divergence of $\sum a_n$. Remember the warning in Note 2: If $\lim_{n\to\infty} a_n = 0$, the series $\sum a_n$ might converge or it might diverge.

Useful Limits

- 1. $\lim_{x \to \infty} \sin x = DNE$
- $2. \lim_{x \to \infty} \arctan x = \frac{\pi}{2}$
- $3. \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$
- $4. \lim_{x \to 0} \frac{\sin x}{x} = 1$
- $5. \lim_{n \to \infty} \sqrt[n]{n} = 1$