Daily Quiz

- Go to Socrative.com and complete the quiz.
- Room Name: HONG5824
- Use your full name.

8.1 Sequences and Continuity

Continuity. If the function f is continuous at L and $\lim_{n\to\infty} a_n = L$, then

$$\lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right) = f(L).$$

In other words, limits can freely move in and out of continuous functions.

8.1 Sequences and Continuity

Find
$$\lim_{n\to\infty}\sin(\pi/n)$$
.

8.1 Factorials

The factorial of a positive integer n, denoted by n!, is the product of all **positive integers** less than or equal to n. If n is 0, then we define 0! = 1. n! is undefined if n is negative.

In other words,

$$n! = \begin{cases} n(n-1)\cdots 2\cdot 1 & \text{if } n \ge 1\\ 1 & \text{if } n = 0\\ \text{undefined} & \text{if } n < 0. \end{cases}$$

8.1 Sequences
Show that the sequence $a_n = \frac{n!}{n^n}$ converges.

8.1 Sequences
Show that the sequence $a_n = \frac{n!}{e^n}$ diverges.

Definition A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is, $a_1 < a_2 < a_3 < \cdots$. It is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is **monotonic** if it is either increasing or decreasing.

Show that the sequence $\left\{\frac{3}{n+5}\right\}_{n=1}^{\infty}$ is decreasing.

Show that the sequence $a_n = \frac{n}{n^2 + 1}$ is decreasing.

Definition A sequence $\{a_n\}$ is **bounded above** if there is a number M such that

$$a_n \le M$$
 for all $n \ge 1$

It is **bounded below** if there is a number m such that

$$m \le a_n$$
 for all $n \ge 1$

If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**.

8 Monotonic Sequence Theorem Every bounded, monotonic sequence is convergent.

Find the limit of the sequence $\{a_n\}$ defined by the recurrence relation

$$a_1 = 2$$
 $a_{n+1} = \frac{1}{2}(a_n + 6).$

Find the limit of the sequence $\{a_n\}$ defined by the recurrence relation

$$a_1 = 2$$
 $a_{n+1} = \frac{1}{2}(a_n + 6).$