Daily Quiz

* Go to Socrative.com and complete the quiz.
* Room Name: HONG5824

* Use your full name.
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Approximation Methods for Definite Integrals

b
When approximating a definite integral / f(z) dx, we rely on integration
using power series and apply one of the two methods below:

1. Integral Test Remainder Estimate

2. Alternating Series Remainder Estimate
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1. Find f e ¥ dr as a power series.

1
2. Evaluate / e—gc2 dx correct to within an error of 0.001.
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Is a function f(x) really equal to its Taylor series inside its interval of
convergence’
Not always.
Consider the function

SN

B e~1/z"  if #= 0,
f(m)_{ 0 ifz=0.

f(x) has derivatives everywhere and f (n) (0) = 0 for all n.
But observe that the Taylor series of f(x) centered at 0 is

fim )(0 .0 N >
)_Z Z_%Ea; :20:0.

Because T'(z) = 0, T'(x) converges for all values of z and the interval of conver-
gence is all real numbers (—oo, 00).
Does this mean f(x) = T(x) = 0 for all real numbers z?

No. f(z) is an example of a function that is not equal to its Taylor series
inside the interval of convergence.
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8.6 When 1s a function equal to its Taylor series?

To make sure that a function f(x) can be approximated by its Taylor series
T'(x), we need to compute the difference between f(z) and 7T'(x).

Recall the definition of the kth-degree Taylor polynomial of f(x) centered
at a:

/" (a)
2

(k) (4
f ( )(a:—a)k.
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(x—a)"+ -+ X

() (g N
1) = 3 LD @) = fla)+/(@)(z—a)+
We defined the Taylor series as the limit of the sequence of Taylor polynomials:

T(x) = lim Ty(x)

k— o0
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8.6 When 1s a function equal to its Taylor series?

We say that f(x) is equal to its Taylor series if the sequence of Taylor
polynomials Ty (x) converges to f(x):

f(z) = lim Tg(x)

k— 00

We define Ri(x) = f(x) — Tk(x) as the kth degree remainder (or the error)
of the Taylor series. Then f(z) is equal to its Taylor series if and only if the
remainder (error) vanishes, i.e.

lim Rk(a?) =0

k— oo
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Taylor’s Inequality

Suppose T (z) is a Taylor polynomial centered at a for the function f. Let
d be a constant and | f*+1D(z)| < M for values of x satisfying |« —a| < d. Then

for those values of x, the error Ry(x) of the Taylor polynomial Ty (x) satisfies
the inequality

M
(k + 1)]

‘:U—a,‘k_H < M

B (2)] < = (k+ 1)

dk+1

In other words, the error from T} (x) is bounded by some constants;

M
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Deciphering Taylor’s Inequality:
1. |x — a| < d looks very similar to the inequality |x — a| < R (R is the
radius of convergence.)

2. a is the center of the Taylor polynomial, and it is the center of the
intervals.

3. d is the radius of approximation, which is the distance from the center
to the boundary of the interval of approximation. In order for the
approximation to make sense, d must be less than R:

d < R.

4. M is computed by maximizing |f**1) (z)| in the interval of approxima-
tion [a — d,a 4+ d]. (Usually maximizing an increasing, decreasing, or an
oscillating function. Techniques like the Closed Interval Method can be
used.)
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Controlling the Error

There are three moving parts to Taylor’s Inequality:
1. k, the degree of the Taylor polynomial
2. d, the radius of approximation.

3. M, the maximum bound for the (k 4 1)-th derivative of f(x) inside the
interval of approximation.

The last moving part M is dependent on both k and d since the maximum
of the (k + 1)-th derivative is taken over the interval [a — d, a + d].

The error gets smaller (|R;| — 0) as one either
1. Increases the degree k of the Taylor polynomial (k — oo) or

2. Reduces the size of the interval of approximation (d — 0).
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Desmos Examples to Play With

Taylor Polynomials of degree k& and the radius of approximation d:

https://www.desmos.com/calculator/bdhuwxcgm?

Graphs of the Taylor polynomials and the errors for various functions:

https://www.cengage.com/math/discipline_content/stewartccc
4/2008/14_cengage_tec/publish/deployments/concepts_4e/4c
3 _tool.html#
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