7.3 Separable Equations

We use Euler’s Method on the slope fields to approximate the solutions to
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7.3 Separable Equations

In some cases, we can explicitly solve the differential equations.

A separable equation is a first-order differential equation in which the ex-

pression for d_y can be factored as a function of x times a function of y. In

x
other words, it can be written in the form

dy

dr 9(z) f(y)
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7.3 Implicit and Explicit Solutions

A solution to a differential equation is called explicit if y is isolated in the
equation.

On the other hand, a solution is implicit if y is not isolated.

Example:
y=+v4—x? (Explicit)

? +y* =4 (Implicit)
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EXAMPLE 1 Solving a separable equation

(a) Solve the differential equation -

dy x*

7 -

dx y

(b) Find the solution of this equation that satisfies the initial condition y(0) = 2.
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3;2

Solutions to d—y = —. The solution for the initial value y(0) = 2 is in red.
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I EXAMPLE 2 A separable equation with an implicit solution

d
Solve the differential equation d—y —
X
N _ 6
dX ’Lj—l-apstj

(?-\j + (,Ogtj) dy = Ex%dx
g (29&6053>4}j = S £ xtdx
\jz-l-.Smj = 2-><3+C
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o wlic'ﬂ— Seluh o,
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Solutions to the differential equation

dy 6>
dr 2y 4+ cosy
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EXAMPLE3 Solve the equation y’' = x°y.

P
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Solutions for 3 = x%y
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Slope field for y' = x%y
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The current in the electric circuit shown below is modeled by the differential
equation

dI
L% LRI = E(
gz T R=EQ)

1. Find an expression for the current in the circuit when the resistance is 12
(), the inductance is 4 H, the battery gives a constant voltage of 60 V, and
the switch is turned on when ¢t = 0.

2. What is the limiting value of the current?

R

switch
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Twn I= 5+ /\e—,gt. nse ‘+w inthal valve T(0=0.

o=5+Ae’
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The graph of I(t) and its limiting value.

y=235
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7.3 Orthogonal (Perpendicular) Lines

Recall: Two lines y = mix + b; and y = mox + by are penpendicular if
mimo — —1.
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7.3 Orthogonal Trajectories

An orthogonal trajectory of a family of curves is a curve that intersects each
curve of the family orthogonally (perpendicularly).

orthogonal
trajectory
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Since a differential equation describes a famliy of curves, an orthogonal tra-

jectory can be computed by multiplying d_y together and setting the expression
&

equal to -1.

Example: The family of concentric circles at the origin has the formula
x? + y? = r? where r is any real number.
The first order differential equation that describes the concentric circles can be

obtained by implicitly differentiating the equation z? + y? = r2.

2z dxr + 2y dy =0

dy =z
de vy
Then the differential equation that describes the orthogonal trajectory to the

circles is
(-5) &
e =
y ) dx

dy _y
dx T
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Solving this differential equation gets us

dy _y
dy B
dy _ do -
y oz
In|y| =In|z|+ C
y| = ela|
y:iecx
y = Ax

where A can be any real number since y = 0 is also a solution. Therefore th
orthogonal trajectories of the concentric circles at the origin are the straight
lines through the origin.
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7.3 Orthogonal Trajectories

Family of concentric circles centered at the

origin:

x% 4+ y2 =12
Differential equation:
dy X

dx  y

Family of straight lines through the origin:
y = mx
Differential equation:

dy y mx
—_— = =—=Tm
dx x x
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Find the orthogonal trajectories of the family of curves z = ky?, where k is
an arbitrary constant.

Solution. First implicitly differentiate x = ky? and solve for 4

dx
dr =k -2y dy
dy _ L
dr  2ky

Now observe that k is not entirely independent of the variables x and y. Because

7

r = ky?, we must have that k = — . Substituting & in the above equation, we
Y

get
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Now the derivative for the orthogonal trajectory must be the reciprocal of

the above expression times -1. In other words,

(ﬁ) Y _
2x/ dx

dy 2w
der vy
Solving the orthogonal trajectory’s differential equation,
dy —2x
der vy
y dy = —2x dx
2
Y 2
g _ _ C
5 x° 4+
2
% 4 4 _
s 9

where C' is a real number. Therefore the orthogonal trajectories of the family

2

of curves z = ky? is 2% + % = (. Note that the equation that we obtained

describes ellipses centered at the origin.
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2

r = ky? and z2 + .- C' are orthogonal to each other.

2
YA

=Y
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7.3 Applications of Orthogonal Trajectories
TOVO‘va\f’\'\\C map.
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