So far we’ve learned how to approximate functions using their Taylor poly-

nomials. For example,

3  z°

SINT =T — a + y
But this approximation requires knowing the derivatives of many orders at the
center.
What if we only know a function’s initial value and its first derivative? How

should we draw a graph that approximates the original function?

In Calculus 1, we learned how to approximate functions using tangent lines
which only uses information about a function’s first derivative and an initial
value. g
The equation of a tangent line at (a, f(a)):

L(z) = f'(a)(z — a) + f(a)

=
0
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But this approximation is only good for a short distance from the base point.
How can we extend the viability of straight-line approximations?

The simplest way is to just draw more straight lines. An approximation us-
ing straight line-segments is called the Euler’s Method.
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7.2 Euler’s Method

Eulers method is the process of moving only a short distance along the orig-
inal tangent line and then making a midcourse correction by changing direction
as indicated by the slope field.
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Euler approximation with step size 0.5  Euler approximation with step size 0.25
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7.2 Euler’s Method

Start at the point given by the initial value and move in the direction indi-
cated by the slope field. Stop after a short time, look at the slope at the new
location, and move in that direction. Repeat.
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7.2 Euler’s Method

e Euler’s method does not produce the exact solution to an initial-value
problem; it only gives an approximation.

e But by decreasing the step size (and therefore increasing the number of
midcourse corrections), we obtain successively better approximations to
the exact solution. yA

FIGURE 16
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Euler’s Method (Computing the endpoints of the line segments).
Approximate values for the solution of the initival-value problem 3', y(zq) = yo,
with step size Az, at z,41, are

Yn+1 = yl(xna yn)Aaj + Yn
nert shipe cavent Y Alug

where \’/w\lw_
Tpt1 = Tn + Az

Note: 3’ is a function of both = and y so y'(z,,y,) means we are plugging in

x, for z and y,, for y.

Here y(zo) = yo is the initial value, meaning (x¢, yo) is where the Euler’s method
starts. vy’ is the first derivative, which is used to compute the slopes of the line
segments.
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Use Euler’s method with step size Az = 0.2 to estimate y(3), where y(z) is

/
= -+
the solution of the initial-value problem 3’ = x + y, y(2) = 0. Inyi v ax+ Y,

n|Tn | Yn Y (Tn, Yn) y' Az Trt1 | Yn+tl

0| 2 0 240=2 0.4 22 | 04+0=04
1| 2.2 oY 2-6 0.52 2.4 0.92
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7.2 Desmos Activity (Optional)

Hey, students!

Go to student.desmos.com
and type in:

/TB 26H




