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Preface

This paper is based on a course given at the “Dottorato di Ricerca in Matematica”
of the University of Rome “La Sapienza” in the Academic year 2000/2001.
The intended aim of the course was to rapidly introduce, although not in an exhaus-
tive way, the non-expert PhD student to deformations of compact complex manifolds,
from the very beginning to some recent (i.e. at that time not yet published) results.

With the term ”deformation theory”, the mathematicians usually intend a set of
deformation theories, each one of which studies small parametric variation of a spe-
cific mathematical structure, for example: deformation theory of complex manifolds,
deformation theory of associative algebras, deformations of schemes, deformations of
representations and much more.
Every mathematician which tries to explain and investigate deformation theory has
to deal with two opposite features: order and chaos.
Chaos: the various deformation theories often rely on theorems which are proved
using very different tools, from families of elliptic differential operators of Kodaira
and Spencer [41] to ringed toposes of Illusie [32].
Order: all the deformation theories have lots of common features; for instance they
have a vector space of first order deformations (usually the H1 of some complex) and
they have an obstruction space (usually an H2).
Another unifying aspect of all deformation theories is summarized in the slogan “In
characteristic 0 every deformation problem is governed by a differential graded Lie
algebra”, which underlie some ideas given, mostly in private communications, by
Quillen, Deligne, Drinfeld and other about 20 years ago. More recently (especially in
[42] and [44]) these ideas have shown a great utility and possibility of development.
Nowadays this approach to deformation theory is a very active area of research which
is usually called deformation theory via DGLA or extended deformation theory.

The goal of these notes is to give a soft introduction to extended deformation the-
ory; with the aim (and the hope) of keeping this material selfcontained, user friendly
and with a tolerating number of pages, we consider only deformations of compact
complex manifolds. Anyhow, most part of the formalism and theorems that we prove
here will apply to many other deformation problems.
The first part of the paper (Chapters I, II and III) is a classical introduction to
deformations of compact complex manifolds; the expert reader can skip this part,
while the beginners can find here the main definitions, the statements of the theo-
rems of Kodaira and Kodaira-Nirenberg-Spencer, an elementary description of the
semiuniversal deformations of Segre-Hirzebruch surfaces and a micro-course in com-
plex analytic singularity theory.
In the second part (From Chapter IV to Chapter VII) we begin to study deforma-
tions in the context of dg-objects, where by dg-objects we intend algebraic structures
supported on differential Z-graded vector spaces.
Most of this part is devoted to introduce some new objects and to prove some results
which play a fundamental role in extended deformation theory, such as for instance:
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deformation functors associated to a differential graded Lie algebra and their homo-
topy invariance, extended deformation functors and Gerstenhaber-Batalin-Vilkoviski
algebras. The reader of this part can also find satisfaction in the proof of the unob-
structness of Calabi-Yau manifolds (theorem of Bogomolov-Tian-Todorov).
Chapter VI is a basic introduction to Kähler manifold which follows essentially Weil’s
book [80]: some modification in the presentation and simplification in the proofs are
made by using the formalism of dg-vector spaces; this partially explain the reason
why this Chapter is contained in part II of these notes.
The third part of the notes (Chapters VIII and IX) is a basic course in L∞-algebras
and their use in deformation theory: a nontrivial application of L∞-algebras in made
in the last section where we give (following [54]) an algebraic proof of Clemens-Ran
theorem “obstructions to deformations annihilate ambient cohomology”.

Each Chapter contains: a brief introduction, the main matter, some exercises and a
survey section. The main matter is organized like a book, while the survey sections
contain bibliographical annotations and theorems for which the proof it is not given
here.

Roma, February 26, 2004 Marco Manetti
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CHAPTER I

Smooth families of compact complex manifolds

In this chapter we introduce the notion of a family f : X → B of compact complex
manifolds as a proper holomorphic submersion of complex manifolds. Easy examples
(I.4, I.6) will show that in general the fibres Xt := f−1(t) are not biholomorphic
each other. Using integration of vector fields we prove that the family is locally
trivial if and only if a certain morphism KS of sheaves over B is trivial, while the
restriction of KS at a point b ∈ B is a linear map KS: Tb,B → H1(Xb, TXb

), called
the Kodaira-Spencer map, which can interpreted as the first derivative at the point b
of the map

B → {isomorphism classes of complex manifolds}, t �→ Xt.

Then, according to Kodaira, Nirenberg and Spencer we define a deformation of a
complex manifolds X as the data of a family X → B, of a base point 0 ∈ B and of
an isomorphism X � X0. The isomorphism class of a deformation involves only the
structure of f in a neighbourhood of X0.

In the last section we state, without proof, the principal pioneer theorems about
deformations proved using hard analysis by Kodaira, Nirenberg and Spencer in the
period 1956-58.

1. Dictionary

For every complex manifold M we denote by:
• OM (U) the C-algebra of holomorphic functions f : U → C defined on an open

subset U ⊂M .
• OM the trivial complex line bundle C×M →M .
• TM the holomorphic tangent bundle to M . The fibre of TM at a point x ∈M ,

i.e. the complex tangent space at x, is denoted by Tx,M .
If x ∈ M is a point we denote by OM,x the C-algebra of germs of holomorphic

functions at a point x ∈ M ; a choice of local holomorphic coordinates z1, . . . , zn,
zi(x) = 0, gives an isomorphism OM,x = C{z1, . . . , zn}, being C{z1, . . . , zn} the C-
algebra of convergent power series.

In order to avoid a too heavy notation we sometimes omit the subscript M , when
the underlying complex manifold is clear from the context.

Definition I.1. A smooth family of compact complex manifolds is a proper holo-
morphic map f : M → B such that:

1. M, B are nonempty complex manifolds and B is connected.
2. The differential of f , f∗ : Tp,M → Tf(p),B is surjective at every point p ∈M .

Two families f : M → B, g : N → B over the same base are isomorphic if there exists
a holomorphic isomorphism N →M commuting with f and g.

Marco Manetti: Lectures on deformations of complex manifolds

1



2 I. SMOOTH FAMILIES OF COMPACT COMPLEX MANIFOLDS

From now on, when there is no risk of confusion, we shall simply say smooth family
instead of smooth family of compact complex manifolds.
Note that if f : M → B is a smooth family then f is open, closed and surjective. If

V ⊂ B is an open subset then f : f−1(V ) → V is a smooth family; more generally
for every holomorphic map of connected complex manifolds C → B, the pull-back
M ×B C → C is a smooth family.
For every b ∈ B we denote Mb = f−1(b): Mb is a regular submanifold of M .

Definition I.2. A smooth family f : M → B is called trivial if it is isomorphic to
the product Mb×B → B for some (and hence all) b ∈ B. It is called locally trivial if
there exists an open covering B = ∪Ua such that every restriction f : f−1(Ua)→ Ua

is trivial.

Lemma I.3. Let f : M → B be a smooth family, b ∈ B. The normal bundle NMb/M

of Mb in M is trivial.

Proof. Let E = Tb,B ×Mb → Mb be the trivial bundle with fibre Tb,B. The
differential f∗ : Tx,M → Tb,B, x ∈Mb induces a surjective morphism of vector bundles
(TM )|Mb

→ E whose kernel is exactly TMb
.

By definition NMb/M = (TM )|Mb
/TMb

and then NMb/M = Tb,B ×Mb.

By a classical result (Ehresmann’s theorem, [37, Thm. 2.4]), if f : M → B is a
family, then for every b ∈ B there exists an open neighbourhood b ∈ U ⊂ B and a
diffeomorphism φ : f−1(U)→Mb × U making the following diagram commutative

Mb

i

�����
��

��
�� Id×{b}

�����������

f−1(U)
φ ��

f
�����������

Mb × U

p2
�����

��
��

��
�

U

being i : Mb → M the inclusion. In particular the diffeomorphism type of the fibre
Mb is independent from b. Later on (Theorem IV.30) we will prove a result that
implies Ehresmann’s theorem.

The following examples of families show that, in general, if a, b ∈ B, a �= b, then Ma

is not biholomorphic to Mb.

Example I.4. Consider B = C− {0, 1},

M = {([x0, x1, x2], λ) ∈ P2 ×B |x2
2x0 = x1(x1 − x0)(x1 − λx0)},

and f : M → B the projection. Then f is a family and the fibre Mλ is a smooth
plane cubic with j-invariant

j(Mλ) = 28 (λ2 − λ + 1)3

λ2(λ− 1)2
.

(Recall that two elliptic curves are biholomorphic if and only if they have the same
j-invariant.)

Example I.5. (Universal family of hypersurfaces)

For fixed integers n, d > 0, consider the projective space PN , N =
(

d + n
n

)
− 1,
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with homogeneous coordinates ai0,... ,in , ij ≥ 0,
∑

j ij = d, and denote

X =

([x], [a]) ∈ Pn × PN

∣∣∣∣∣∣
∑

i0+...+in=d

ai0,... ,inxi0
0 . . . xin

n = 0

 .

X is a smooth hypersurface of Pn× PN , the differential of the projection X → PN is
not surjective at a point ([x], [a]) if and only if [x] is a singular point of Xa.
Let B = {[a] ∈ PN |Xa is smooth }, M = f−1(B): then B is open (exercise),
f : M → B is a family and every smooth hypersurface of degree d of Pn is isomorphic
to a fibre of f .

Example I.6. (Hopf surfaces)
Let A ∈ GL(2, C) be a matrix with eigenvalues of norm > 1 and let 〈A〉 � Z ⊂
GL(2, C) be the subgroup generated by A. The action of 〈A〉 on X = C2 − {0} is
free and properly discontinuous: in fact a linear change of coordinates C : C2 → C2

changes the action of 〈A〉 into the action of 〈C−1AC〉 and therefore it is not restrictive
to assume A is a lower triangular matrix.
Therefore the quotient SA = X/〈A〉 is a compact complex manifold called Hopf
surface: the holomorphic map X → SA is the universal cover and then for every
point x ∈ SA there exists a natural isomorphism π1(SA, x) � 〈A〉. We have already
seen that if A, B are conjugated matrix then SA is biholomorphic to SB. Conversely
if f : SA → SB is a biholomorphism then f lifts to a biholomorphism g : X → X such
that gA = Bkg; since f induces an isomorphism of fundamental groups k = ±1.
By Hartogs’ theorem g extends to a biholomorphism g : C2 → C2 such that g(0) = 0;
since for every x �= 0 lim

n→∞
An(x) = +∞ and lim

n→∞
B−n(x) = 0 it must be gA = Bg.

Taking the differential at 0 of gA = Bg we get that A is conjugated to B.

Exercise I.7. If A = e2πiτI ∈ GL(2, C), τ = a + ib, b < 0, then the Hopf surface
SA is the total space of a holomorphic G-principal bundle SA → P1, where G =
C/(Z + τZ). �

Example I.8. (Complete family of Hopf surfaces)
Denote B = {(a, b, c) ∈ C3 | |a| > 1, |c| > 1}, X = B × (C2 − {0}) and let Z � G ⊂
Aut(X) be the subgroup generated by

(a, b, c, z1, z2) �→ (a, b, c, az1, bz1 + cz2)

The action of G on X is free and properly discontinuous, let M = X/G be its quotient
and f : M → B the projection on the first coordinates: f is a family whose fibres
are Hopf surfaces. Every Hopf surface is isomorphic to a fibre of f , this motivate the
adjective “complete”.
In particular all the Hopf surfaces are diffeomorphic to S1 × S3 (to see this look at
the fibre over (2, 0, 2)).

Notation I.9. For every pair of pointed manifolds (M, x), (N, y) we denote by
MorGer((M, x), (N, y)) the set of germs of holomorphic maps f : (M, x) → (N, y).
Every element of MorGer((M, x), (N, y)) is an equivalence class of pairs (U, f), where
x ∈ U ⊂ M is an open neighbourhood of x, f : U → N is a holomorphic map
such that f(x) = y and (U, f) ∼ (V, g) if and only if there exists an open subset
x ∈W ⊂ U ∩ V such that f|W = g|W .
The category Gersm of germs of complex manifolds is the category whose object are
the pointed complex manifold (M, x) and the morphisms are the MorGer((M, x), (N, y))
defined above. A germ of complex manifold is nothing else that an object of Gersm.
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In Chapter III we will consider Gersm as a full subcategory of the category of an-
alytic singularities Ger.

Exercise I.10. Gersm is equivalent to its full subcategory whose objects are (Cn, 0),
n ∈ N. �
Roughly speaking a deformation is a “framed germ” of family; more precisely

Definition I.11. Let (B, b0) be a pointed manifold, a deformation M0
i−→M

f−→(B, b0)
of a compact complex manifold M0 over (B, b0) is a pair of holomorphic maps

M0
i−→M

f−→B

such that:
1. fi(M0) = b0.
2. There exists an open neighbourhood b0 ∈ U ⊂ B such that f : f−1(U)→ U is

a proper smooth family.
3. i : M0 → f−1(b0) is an isomorphism of complex manifolds.

M is called the total space of the deformation and (B, b0) the base germ space.

Definition I.12. Two deformations of M0 over the same base

M0
i−→M

f−→(B, b0), M0
j−→N

g−→(B, b0)

are isomorphic if there exists an open neighbourhood b0 ∈ U ⊂ B, and a commutative
diagram of holomorphic maps

M0
i ��

j

��

f−1(U)

f

�������������

g−1(U) g
�� U

with the diagonal arrow a holomorphic isomorphism.

For every pointed complex manifold (B, b0) we denote by DefM0(B, b0) the set of
isomorphism classes of deformations of M0 with base (B, b0). It is clear from the
definition that if b0 ∈ U ⊂ B is open, then DefM0(B, b0) = DefM0(U, b0).

Exercise I.13. There exists an action of the group Aut(M0) of holomorphic isomor-

phisms of M0 on the set DefM0(B, b0): if g ∈ Aut(M0) and ξ : M0
i−→M

f−→(B, b0)
is a deformation we define

ξg : M0
ig−1

−→M
f−→(B, b0).

Prove that ξg = ξ if and only if g : f−1(b0)→ f−1(b0) can be extended to an isomor-
phism ĝ : f−1(V )→ f−1(V ), b0 ∈ V open neighbourhood, such that fĝ = f . �

If ξ : M0
i−→M

f−→(B, b0) is a deformation and g : (C, c0)→ (B, b0) is a holomorphic
map of pointed complex manifolds then

g∗ξ : M0
(i,c0)−→M ×B C

pr−→(C, c0)

is a deformation with base point c0. It is clear that the isomorphism class of g∗ξ
depends only by the class of g in MorGer((C, c0), (B, b0)).
Therefore every g ∈ MorGer((C, c0), (B, b0)) induces a well defined pull-back mor-
phism

g∗ : DefM0(B, b0)→ DefM0(C, c0).
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2. Dolbeault cohomology

If M is a complex manifold and E is a holomorphic vector bundle on M , we denote:
• E∨ the dual bundle of E.
• Γ(U, E) the space of holomorphic sections s : U → E on an open subset U ⊂M .
• Ω1

M = T∨
M the holomorphic cotangent bundle of M .

• Ωp
M =

∧p T∨
M the bundle of holomorphic differential p-forms.

For every open subset U ⊂ M we denote by Γ(U,Ap,q
M ) the C-vector space of dif-

ferential (p, q)-forms on U . If z1, . . . , zn are local holomorphic coordinates, then
φ ∈ Γ(U,Ap,q

M ) is written locally as φ =
∑

φI,JdzI ∧ dzJ , where I = (i1, . . . , ip),
J = (j1, . . . , jq), dzI = dzi1 ∧ . . . ∧ dzip , dzJ = dzj1 ∧ . . . ∧ dzjq and the φI,J are C∞

functions.
Similarly, if E →M is a holomorphic vector bundle we denote by Γ(U,Ap,q(E)) the
space of differential (p, q)-forms on U with value in E; locally, if e1, . . . , er is a local
frame for E, an element of Γ(U,Ap,q(E)) is written as

∑r
i=1 φiei, with φi ∈ Γ(U,Ap,q).

Note that there exist natural isomorphisms Γ(U,Ap,q(E)) � Γ(U,A0,q(Ωp
M ⊗ E)).

We begin recalling the well known

Lemma I.14 (Dolbeault’s lemma). Let

∆n
R = {(z1, . . . , zn) ∈ Cn | |z1| < R, . . . , |zn| < R}

be a polydisk of radius R ≤ +∞ (∆n
+∞ = Cn) and let φ ∈ Γ(∆n

R,Ap,q), q > 0, such
that ∂φ = 0. Then there exists ψ ∈ Γ(∆n

R,Ap,q−1) such that ∂ψ = φ.

Proof. [37, Thm. 3.3], [26, pag. 25].

If E is a holomorphic vector bundle, the ∂ operator extends naturally to the Dol-
beault operator ∂ : Γ(U,Ap,q(E))→ Γ(U,Ap,q+1(E)) by the rule ∂(

∑
i φiei) =

∑
i(∂φi)ei.

If h1, . . . , hr is another local frame of E then there exists a matrix (aij) of holomor-
phic functions such that hi =

∑
j aijej and then

∂

(∑
i

φihi

)
= ∂

∑
i,j

φiaijej

 =
∑
i,j

∂(φiaij)ej =
∑

i

(∂φi)aijej =
∑

i

(∂φi)hi.

It is obvious that ∂
2 = 0.

Definition I.15. The Dolbeault’s cohomology of E, Hp,∗
∂

(U, E) is the cohomology
of the complex

0−→Γ(U,Ap,0(E)) ∂−→Γ(U,Ap,1(E)) ∂−→ . . .
∂−→Γ(U,Ap,q(E)) ∂−→ . . .

Note that Hp,0

∂
(U, E) = Γ(U,Ωp

M ⊗ E) is the space of holomorphic sections.
The Dolbeault cohomology has several functorial properties; the most relevant are:

1. Every holomorphic morphism of holomorphic vector bundles E → F induces
a morphism of complexes Γ(U,Ap,∗(E))→ Γ(U,Ap,∗(F )) and then morphisms
of cohomology groups Hp,∗

∂
(U, E)→ Hp,∗

∂
(U, F ).

2. The wedge product

Γ(U,Ap,q(E))⊗ Γ(U,Ar,s(F )) ∧−→Γ(U,Ap+r,q+s(E ⊗ F )),(∑
φiei

)
⊗

(∑
ψjfj

)
→

∑
φi ∧ ψjei ⊗ ej .

commutes with Dolbeault differentials and then induces a cup product

∪ : Hp,q

∂
(U, E)⊗Hr,s

∂
(U, F )→ Hp+r,q+s

∂
(U, E ⊗ F ).



6 I. SMOOTH FAMILIES OF COMPACT COMPLEX MANIFOLDS

3. The composition of the wedge product with the trace map E ⊗ E∨ → OM

gives bilinear morphisms of cohomology groups

∪ : Hp,q

∂
(U, E)×Hr,s

∂
(U, E∨)→ Hp+r,q+s

∂
(U,OM ).

Theorem I.16. If M is a compact complex manifold of dimension n and E → M
is a holomorphic vector bundle then for every p, q ≥ 0:

1. dimC Hp,q

∂
(M, E) <∞.

2. (Serre’s duality) The bilinear map Γ(M,Ap,q(E))×Γ(M,An−p,n−q(E∨))→ C,

(φ, ψ) �→
∫

M
φ ∧ ψ

induces a perfect pairing Hp,q

∂
(M, E) × Hn−p,n−q

∂
(M, E∨) → C and then an

isomorphism Hp,q

∂
(M, E)∨ � Hn−p,n−q

∂
(M, E∨).

Proof. [37].

From now on we denote for simplicity Hq(M, E) = H0,q

∂
(M, E), hq(M, E) = dimC Hq(M, E),

Hq(M,Ωp(E)) = Hp,q

∂
(M, E).

Definition I.17. If M is a complex manifold of dimension n, the holomorphic line
bundle KM =

∧n T∨
M = Ωn

M is called the canonical bundle of M .

Since Ωp
M = KM ⊗ (Ωn−p

M )∨, an equivalent statement of the Serre’s duality is
Hp(M, E)∨ � Hn−p(M, KM ⊗E∨) for every holomorphic vector bundle E and every
p = 0, . . . , n.

The Hodge numbers of a fixed compact complex manifold M are by definition

hp,q = dimC Hp,q

∂
(M,O) = dimC H0,q

∂
(M, Ωp).

The Betti numbers of M are the dimensions of the spaces of the De Rham cohomology
of M , i.e.

bp = dimC Hp
d (M, C), Hp

d (M, C) =
d-closed p-forms
d-exact p-forms

.

Exercise I.18. Let p ≥ 0 be a fixed integer and, for every 0 ≤ q ≤ p, denote by
Fq ⊂ Hp

d (M, C) the subspace of cohomology classes represented by a d-closed form
η ∈ ⊕i≤qΓ(M,Ap−i,i). Prove that there exist injective linear morphisms Fq/Fq−1 →
Hp−q,q

∂
(M,O). Deduce that bp ≤

∑
q hp−q,q. �

Exercise I.19. Let f : Cn → C be a holomorphic function and assume that X =
f−1(0) is a regular smooth submanifold; denote i : X → Cn the embedding.
Let φ ∈ Γ(Cn,Ap,q), q > 0, be a differential form such that ∂φ = 0 in an open
neighbourhood of X. Prove that i∗φ is ∂-exact in X. (Hint: prove that there exists
ψ ∈ Γ(Cn,Ap,q) such that ∂φ = ∂(fψ).) �
Exercise I.20. Let h : Cn → C be holomorphic and let U = {z ∈ Cn |h(z) �= 0}.

Prove that Hq(U,OU ) = 0 for every q > 0. (Hint: consider the open disk ∆ = {t ∈
C | |t| < 1} and the holomorphic maps φ : U ×∆→ Cn+1, (z, t) �→ (z, (1 + t)h−1(z)),
f : Cn+1 → C, f(z, u) = h(z)u− 1; φ is a biholomorphism onto the open set {(z, u) ∈
Cn+1 |, |uh(z)− 1| < 1}; use Exercise I.19.) �
Exercise I.21. Prove that the following facts are equivalent:

1. For every holomorphic function f : C→ C there exists a holomorphic function
h : C→ C such that f(z) = h(z + 1)− h(z) for every z.
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2. H1(C− {0},OC) = 0.
(Hint: Denote p : C → C − {0} the universal covering p(z) = e2πiz. Given f , use a
partition of unity to find a C∞ function g such that f(z) = g(z + 1)− g(z); then ∂g
is the pull back of a ∂-closed form on C− {0}.) �

3. Čech cohomology

Let E be a holomorphic vector bundle on a complex manifold M . Let U = {Ua},
a ∈ I, M = ∪aUa be an open covering. For every k ≥ 0 let Ck(U , E) be the set of
skewsymmetric sequences {fa0,a1,... ,ak

}, a0, . . . , ak ∈ I, where fa0,a1,... ,ak
: Ua0 ∩ . . .∩

Uak
→ E is a holomorphic section. skewsymmetric means that for every permutation

σ ∈ Σk+1, faσ(0),aσ(1),... ,aσ(k)
= (−1)σfa0,a1,... ,ak

.

The Čech differential d : Ck(U , E)→ Ck+1(U , E) is defined as

(df)a0,... ,ak+1
=

k+1∑
i=0

(−1)ifa0,... ,âi,... ,ak+1
.

Since d2 = 0 (exercise) we may define cocycles Zk(U , E) = ker d ⊂ Ck(U , E),
coboundaries Bk(U , E) = Im d ⊂ Zk(U , E) and cohomology groups Hk(U , E) =
Zk(U , E)/Bk(U , E).

Proposition I.22. For every holomorphic vector bundle E and every locally fi-
nite covering U = {Ua}, a ∈ I, there exists a natural morphism of C-vector spaces
θ : Hk(U , E)→ H0,k

∂
(M, E).

Proof. Let ta : M → C, a ∈ I, be a partition of unity subordinate to the
covering {Ua}: supp(ta) ⊂ Ua,

∑
a ta = 1,

∑
∂ta = 0.

Given f ∈ Ck(U , E) and a ∈ I we consider

φa(f) =
∑

c1,... ,ck

fa,c1,... ,ck
∂tc1 ∧ . . . ∧ ∂tck

∈ Γ(Ua,A0,k(E)),

φ(f) =
∑

a

taφa(f) ∈ Γ(M,A0,k(E)).

Since every fa,c1,... ,ck
is holomorphic, it is clear that ∂φa = 0 and then

∂φ(f) =
∑

a

∂ta ∧ φa(f) =
∑

c0,... ,ck

fc0,... ,ck
∂tc0 ∧ . . . ∧ ∂tck

.

We claim that φ is a morphism of complexes; in fact

φ(df) =
∑

a

ta
∑

c0,... ,ck

dfa,c0,... ,ck
∂tc0 ∧ . . . ∧ ∂tck

=

∑
a

ta

∂φ(f)−
k∑

i=0

∑
ci

∂tci ∧
∑

c0,... ,ĉi,... ,ck

fa,c0,... ,ĉi,... ,ck
∂tc0 ∧ . . . ∧ ∂̂tci ∧ . . . ∧ ∂tck

 =

=
∑

a

ta∂φ(f) = ∂φ(f).
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Setting θ as the morphism induced by φ in cohomology, we need to prove that θ is
independent from the choice of the partition of unity. We first note that, if df = 0
then, over Ua ∩ Ub, we have

φa(f)− φb(f) =
∑

c1,... ,ck
(fa,c1,... ,ck

− fb,c1,... ,ck
)∂tc1 ∧ . . . ∧ ∂tck

=
∑

c1,... ,ck

∑k
i=1(−1)i−1fa,b,c1,... ,ĉi,... ,ck

∂tc1 ∧ . . . ∧ ∂tck

=
∑k

i=1(−1)i−1
∑

c1,... ,ck
fa,b,c1,... ,ĉi,... ,ck

∂tc1 ∧ . . . ∧ ∂tck

=
k∑

i=1

∑
ci

∂tci ∧
∑

c1,... ,ĉi,... ,ck

fa,b,c1,... ,ĉi,... ,ck
∂tc1 ∧ . . . ∧ ∂̂tci ∧ . . . ∧ ∂tck

= 0.

Let va be another partition of 1, ηa = ta − va, and denote, for f ∈ Zk(U , E),

φ̃a =
∑

c1,... ,ck

fa,c1,... ,ck
∂vc1 ∧ . . . ∧ ∂vck

,

ψj
a =

∑
c1,... ,ck

fa,c1,... ,ck
∂tc1 ∧ . . . ∧ ∂tcj−1 ∧ vcj∂vcj+1 ∧ . . . ∧ ∂vck

, j = 1, . . . , k.

The same argument as above shows that φ̃a = φ̃b and ψj
a = ψj

b for every a, b, j.
Therefore all the ψj

a come from a global section ψj ∈ Γ(M,A0,k−1(E)); moreover
φ− φ̃ =

∑
j(−1)j−1∂ψj and then φ, φ̃ determine the same cohomology class.

Exercise I.23. In the same situation of Proposition I.22 define, for every k ≥ 0,
Dk(U , E) as the set of sequences {fa0,a1,... ,ak

}, a0, . . . , ak ∈ I, where fa0,a1,... ,ak
: Ua0∩

. . . ∩ Uak
→ E is a holomorphic section. Denote by i : Ck(U , E) → Dk(U , E) the

natural inclusion. The same definition of the Čech differential gives a differential
d : Dk(U , E)→ Dk+1(U , E) making i a morphism of complexes. Moreover, it is pos-
sible to prove (see e.g. [73, p. 214]) that i induce isomorphisms between cohomology
groups. Prove:

1. Given two holomorphic vector bundles E, F consider the linear maps

Dk(U , E)⊗Dp−k(U , F ) ∪−→Dp(U , E ⊗ F ), (f ∪ g)a0,... ,ap = fa0,... ,ak
⊗ gak,... ,ap .

Prove that ∪ is associative and d(f ∪ g) = df ∪ g + (−1)kf ∪ dg, where f ∈
Dk(U , E).

2. The antisymmetrizer p : Dk(U , E)→ Ck(U , E),

(pf)a0,... ,an =
1

(n + 1)!

∑
σ

(−1)σfaσ(0),... ,aσ(n)
, σ ∈ Σn+1,

is a morphism of complexes and then induce a morphism p : Hk(D∗(U , E))→
Hk(U , E) such that pi = Id (Hint: the readers who are frightened by combi-
natorics may use linearity and compatibility with restriction to open subsets
N ⊂M of d, p to reduce the verification of dp(f) = pd(f) in the case U = {Ua},
a = 1, . . . , m finite cover and fa1,... ,ak

�= 0 only if ai = i).
3. The same definition of φ given in the proof of I.22 gives a morphism of com-

plexes φE : D∗(U , E) → Γ(M,A0,∗(E)) which is equal to the composition of
φ and p. In particular φE induces θ̃ : Hk(D∗(U , E)) → Hk(M, E) such that
θp = θ̃.

4. Prove that, if dg = 0 then φE⊗F (f ∪ g) = φE(f) ∧ φF (g). (Hint: write
0 =

∑
b tbdgb,ak,... ,ap .)
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5. If E, F are holomorphic vector bundles on M then there exists a functorial
cup product

∪ : Hp(U , E)⊗Hq(U , F )→ Hp+q(U , E ⊗ F )

commuting with θ and the wedge product in Dolbeault cohomology.

�

Theorem I.24 (Leray). Let U = {Ua} be a locally finite covering of a complex
manifold M , E a holomorphic vector bundle on M : if Hk−q

∂
(Ua0 ∩ . . . ∩ Uaq , E) = 0

for every q < k and a0, . . . , aq, then θ : Hk(U , E)→ Hk
∂
(M, E) is an isomorphism.

Proof. The complete proof requires sheaf theory and spectral sequences; here
we prove “by hand” only the cases k = 0, 1: this will be sufficient for our applications.
For k = 0 the theorem is trivial, in fact H0

∂
(M, E) and H0(U , E) are both isomorphic

to the space of holomorphic sections of E over M . Consider thus the case k = 1; by
assumption H1

∂
(Ua, E) = 0 for every a.

Let φ ∈ Γ(M,A0,1(E)) be a ∂-closed form, then for every a there exists ψa ∈
Γ(Ua,A0,0(E)) such that ∂ψa = φ. The section fa,b = ψa − ψb : Ua ∩ Ub → E is
holomorphic and then f = {fa,b} ∈ C1(U , E); since fa,b − fc,b + fc,a = 0 for every
a, b, c we have f ∈ Z1(U , E); define σ(φ) ∈ H1(U , E) as the cohomology class of f .
It is easy to see that σ(φ) is independent from the choice of the sections ψa; we want
to prove that σ = θ−1. Let ta be a fixed partition of unity.
Let f ∈ Z1(U , E), then θ(f) = [φ], φ =

∑
b fa,b∂tb; we can choose ψa =

∑
b fa,btb and

then

σ(φ)a,c =
∑

b

(fa,b − fc,b)tb = fa,c, ⇒ σθ = Id.

Conversely, if φ|Ua
= ∂ψa then θσ([φ]) is the cohomology class of

∂
∑

b

(ψa − ψb)tb = ∂
∑

b

ψatb − ∂
∑

b

ψbtb = φ− ∂
∑

b

ψbtb.

Remark I.25. The theory of Stein manifolds (see e.g. [28]) says that the hypotheses
of Theorem I.24 are satisfied for every k whenever every Ua is biholomorphic to an
open convex subset of Cn.

Example I.26. Let T → P1 be the holomorphic tangent bundle, x0, x1 homoge-
neous coordinates on P1, Ui = {xi �= 0}. Since the tangent bundle of Ui = C is
trivial, by Dolbeault’s lemma, H1(Ui, T ) = 0 and by Leray’s theorem H i(P1, T ) =
H i({U0, U1}, T ), i = 0, 1.
Consider the affine coordinates s = x1/x0, t = x0/x1, then the holomorphic sections
of T over U0, U1 and U0,1 = U0∩U1 are given respectively by convergent power series

+∞∑
i=0

ais
i ∂

∂s
,

+∞∑
i=0

bit
i ∂

∂t
,

+∞∑
i=−∞

cis
i ∂

∂s
.

Since, over U0,1, t = s−1 and
∂

∂t
= −s2 ∂

∂s
, the Cech differential is given by

d

(
+∞∑
i=0

ais
i ∂

∂s
,

+∞∑
i=0

bit
i ∂

∂t

)
=

+∞∑
i=0

ais
i ∂

∂s
+

2∑
i=−∞

b2−is
i ∂

∂s
,



10 I. SMOOTH FAMILIES OF COMPACT COMPLEX MANIFOLDS

and then H1({U0, U1}, T ) = 0 and

H0({U0, U1}, T ) =
〈(

∂

∂s
,−t2

∂

∂t

)
,

(
s
∂

∂s
,−t

∂

∂t

)
,

(
s2 ∂

∂s
,−∂

∂t

)〉
.

Example I.27. If X = P1 × Cn
t then H1(X, TX) = 0. If C ⊂ P1 is an affine open

subset with affine coordinate s, then H0(X, TX) is the free O(Cn)-module generated
by

∂

∂t1
, . . . ,

∂

∂tn
,

∂

∂s
, s

∂

∂s
, s2 ∂

∂s
.

The proof is essentially the same (replacing the constant terms ai, bi, ci with holo-
morphic functions over Cn) of Example I.26.

4. The Kodaira-Spencer map

Notation I.28. Given a holomorphic map f : X → Y of complex manifolds and
complexified vector fields η ∈ Γ(X,A0,0(TX)), γ ∈ Γ(Y,A0,0(TY )) we write γ = f∗η
if for every x ∈ X we have f∗η(x) = γ(f(x)), where f∗ : Tx,X → Tf(x),Y is the
differential of f .

Let f : M → B be a fixed smooth family of compact complex manifolds, dimB = n,
dimM = m + n; for every b ∈ B we let Mb = f−1(b).

Definition I.29. A holomorphic coordinate chart (z1, . . . , zm, t1, . . . , tn) : U ↪→
Cm+n, U ⊂ M open, is called admissible if f(U) is contained in a coordinate chart
(v1, . . . , vn) : V ↪→ Cn, V ⊂ B, such that ti = vi ◦ f for every i = 1, . . . , n.

Since the differential of f has everywhere maximal rank, by the implicit function
theorem, M admits a locally finite covering of admissible coordinate charts.

Lemma I.30. Let f : M → B be a smooth family of compact complex manifolds. For
every γ ∈ Γ(B,A0,0(TB)) there exists η ∈ Γ(M,A0,0(TM )) such that f∗η = γ.

Proof. Let M = ∪Ua be a locally finite covering of admissible charts; on every
Ua there exists ηa ∈ Γ(Ua,A0,0(TM )) such that f∗ηa = γ.
It is then sufficient to take η =

∑
a ρaηa, being ρa : Ua → C a partition of unity

subordinate to the covering {Ua}.
Let Tf ⊂ TM be the holomorphic vector subbundle of tangent vectors v such that

f∗v = 0. If z1, . . . , zm, t1, . . . , tn is an admissible system of local coordinates then
∂

∂z1
, . . . ,

∂

∂zm
is a local frame of Tf . Note that the restriction of Tf to Mb is equal

to TMb
.

For every open subset V ⊂ B let Γ(V, TB) be the space of holomorphic vector fields
on V .
For every γ ∈ Γ(V, TB) take η ∈ Γ(f−1(V ),A0,0(TM )) such that f∗η = γ. In an

admissible system of local coordinates zi, tj we have η =
∑

i ηi(z, t)
∂

∂zi
+

∑
j

γi(t)
∂

∂tj
,

with γi(t) holomorphic, ∂η =
∑

i ∂ηi(z, t)
∂

∂zi
and then ∂η ∈ Γ(f−1(V ),A0,1(Tf )).

Obviously ∂η is ∂-closed and then we can define the Kodaira-Spencer map

KS(V )f : Γ(V, TB)→ H1(f−1(V ), Tf ), KS(V )f (γ) = [∂η].
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Lemma I.31. The map KS(V )f is a well-defined homomorphism of O(V )-modules.

Proof. If η̃ ∈ Γ(f−1(V ),A0,0(TM )), f∗η̃ = γ, then η − η̃ ∈ (f−1(V ),A0,0(Tf ))
and [∂η̃] = [∂η] ∈ H1(f−1(V ), Tf ).
If g ∈ O(V ) then f∗(f∗g)η = gγ, ∂(f∗g)η = (f∗g)∂η.

If V1 ⊂ V2 ⊂ B then the Kodaira-Spencer mapsKS(Vi)f : Γ(Vi, TB)→ H1(f−1(Vi), Tf ),
i = 1, 2, commute with the restriction maps Γ(V2, TB)→ Γ(V1, TB), H1(f−1(V2), Tf )→
H1(f−1(V1), Tf ). Therefore we get a well defined OB,b-linear map

KSf : ΘB,b → (R1f∗Tf )b,

where ΘB,b and (R1f∗Tf )b are by definition the direct limits, over the set of open
neighbourhood V of b, of Γ(V, TB) and H1(f−1(V ), Tf ) respectively.
If b ∈ B, then there exists a linear map KSf : Tb,B → H1(Mb, TMb

) such that for
every open subset b ∈ V ⊂ B there exists a commutative diagram

Γ(V, TB)
KS(V )f−→ H1(f−1(V ), Tf )� �r

Tb,B
KSf−→ H1(Mb, TMb

)

where the vertical arrows are the natural restriction maps.
In fact, if V is a polydisk then Tb,B is the quotient of the complex vector space
Γ(V, TB) by the subspace I = {γ ∈ Γ(V, TB) | γ(b) = 0}; by O(V )-linearity I is
contained in the kernel of r ◦ KS(V )f .
The Kodaira-Spencer map has at least two geometric interpretations: obstruction to

the holomorphic lifting of vector fields and first-order variation of complex structures
(this is a concrete feature of the general philosophy that deformations are a derived
construction of automorphisms).

Proposition I.32. Let f : M → B be a family of compact complex manifolds and
γ ∈ Γ(V, TB), then KS(V )f (γ) = 0 if and only if there exists η ∈ Γ(f−1(V ), TM ) such
that f∗η = γ.

Proof. One implication is trivial; conversely let η ∈ Γ(f−1(V ),A0,0(TM )) such
that f∗η = γ. If [∂η] = 0 then there exists τ ∈ Γ(f−1(V ),A0,0(Tf )) such that
∂(η − τ) = 0, η − τ ∈ Γ(f−1(V ), TM ) and f∗(η − τ) = γ.

To compute the Kodaira-Spencer map in terms of Cech cocycles we assume that V
is a polydisk with coordinates t1, . . . , tn and we fix a locally finite covering U = {Ua}
of admissible holomorphic coordinates za

1 , . . . , za
m, ta1, . . . , tan : Ua → C, tai = f∗ti.

On Ua ∩ Ub we have the transition functions zb
i = gb

i,a(z
a, ta), i = 1, . . . , m

tbi = tai , i = 1, . . . , n

Consider a fixed integer h = 1, . . . , n and η ∈ Γ(f−1(V ),A0,0(TM )) such that f∗η =
∂

∂th
; in local coordinates we have

η =
∑

i

ηa
i (za, ta)

∂

∂za
i

+
∂

∂tah
, η =

∑
i

ηb
i (z

b, tb)
∂

∂zb
i

+
∂

∂tbh
.

Since, for every a, η− ∂

∂tah
∈ Γ(Ua,A0,0(Tf )) and ∂

(
η − ∂

∂tah

)
= ∂η, KS(V )f

(
∂

∂th

)
∈

H1(U , Tf ) is represented by the cocycle
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Formula I.33.

KS(V )f

(
∂

∂th

)
b,a

=
(

η − ∂

∂tbh

)
−

(
η − ∂

∂tah

)
=

∂

∂tah
− ∂

∂tbh
=

∑
i

∂gb
i,a

∂tah

∂

∂zb
i

.

The above formula allows to prove easily the invariance of the Kodaira-Spencer
maps under base change; more precisely if f : M → B is a smooth family, φ : C → B
a holomorphic map, φ̂, f̂ the pullbacks of φ and f ,

M ×B C
φ̂−→ M�f̂

�f

C
φ−→ B

c ∈ C, b = f(c).

Theorem I.34. In the above notation, via the natural isomorphism Mb = f̂−1(c),
we have

KSf̂ = KSfφ∗ : Tc,C → H1(Mb, TMb
).

Proof. It is not restrictive to assume B ⊂ Cn
t , C ⊂ Cs

u polydisks, c = {ui = 0}
and b = {ti = 0}, ti = φi(u).
If za, ta : Ua → C, zb, tb : Ub → C are admissible local coordinate sets with transition
functions zb

i = gb
i,a(z

a, ta), then za, ua : Ua ×B C → C, zb, tb : Ub ×B C → C are
admissible with transition functions zb

i = gb
i,a(z

a, φ(ua)).
Therefore

KSf̂

(
∂

∂uh

)
b,a

=
∑

i

∂gb
i,a

∂ua
h

∂

∂zb
i

=
∑
i,j

∂gb
i,a

∂taj

∂φj

∂ua
h

∂

∂zb
i

= KSf

(
φ∗

∂

∂uh

)
b,a

.

It is clear that the Kodaira-Spencer map KSf : Tb0,B → H1(M0, TM0) is defined for

every isomorphism class of deformation M0 →M
f−→(B, b0): The map KSf : ΘB,b0 →

(R1f∗Tf )b0 is defined up to isomorphisms of the OB,b0 module (R1f∗Tf )b0 .

Definition I.35. Consider a deformation ξ : M0
i−→M

f−→(B, b0), fi(M0) = b0,
with Kodaira-Spencer map KSξ : Tb0,B → H1(M0, TM0). ξ is called:

1. Versal if KSξ is surjective and for every germ of complex manifold (C, c0) the
morphism

MorGer((C, c0), (B, b0))→ DefM0(C, c0), g �→ g∗ξ

is surjective.
2. Semiuniversal if it is versal and KSξ is bijective.
3. Universal if KSξ is bijective and for every pointed complex manifolds (C, c0)

the morphism

MorGer((C, c0), (B, b0))→ DefM0(C, c0), g �→ g∗ξ

is bijective.

Versal deformations are also called complete; semiuniversal deformations are also
called miniversal or Kuranishi deformations.
Note that if ξ is semiuniversal, g1, g2 ∈ MorGer((C, c0), (B, b0)) and g∗1ξ = g∗2ξ then,

according to Theorem I.34, dg1 = dg2 : Tc0,C → Tb0,B.
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Exercise I.36. A universal deformation ξ : M0
i−→M

f−→(B, b0) induces a repre-
sentation (i.e. a homomorphism of groups)

ρ : Aut(M0)→ AutGer((B, b0)), ρ(g)∗ξ = ξg, g ∈ Aut(M0).

Every other universal deformation over the germ (B, b0) gives a conjugate represen-
tation. �

5. Rigid varieties

Definition I.37. A deformation M0 →M → (B, b0) is called trivial if it is isomor-
phic to

M0
Id×{b0}−→ M0 ×B

pr−→(B, b0).

Lemma I.38. Let f : M → ∆n
R be a smooth family of compact complex manifolds,

t1, . . . , tn coordinates in the polydisk ∆n
R. If there exist holomorphic vector fields

χ1, . . . , χn on M such that f∗χh =
∂

∂th
then there exists 0 < r ≤ R such that

f : f−1(∆n
r )→ ∆n

r is the trivial family.

Proof. For every r ≤ R, h ≤ n denote

∆h
r = {(z1, . . . , zn) ∈ Cn | |z1| < r, . . . , |zh| < r, zh+1 = 0, . . . , zn = 0} ⊂ ∆n

R.

We prove by induction on h that there exists R ≥ rh > 0 such that the restriction of
the family f over ∆h

rh
is trivial. Taking r0 = R the statement is obvious for h = 0.

Assume that the family is trivial over ∆h
rh

, h < n; shrinking ∆n
R if necessary it is not

restrictive to assume R = rh and the family trivial over ∆h
R.

The integration of the vector field χh+1 gives an open neighbourhood M × {0} ⊂
U ⊂ M × C and a holomorphic map H : U → M with the following properties (see
e.g. [8, Ch. VII]):

1. For every x ∈M , {x} × C ∩ U = {x} ×∆(x) with ∆(x) a disk.
2. For every x ∈ M the map Hx = H(x,−) : ∆(x) → M is the solution of the

Cauchy problem 
dHx

dt
(t) = χh+1(Hx(t))

Hx(0) = x

In particular if H(x, t) is defined then f(H(x, t)) = f(x) + (0, . . . , t, . . . , 0) (t
in the (h + 1)-th coordinate).

3. If V ⊂M is open and V ×∆ ⊂ U then for every t ∈ ∆ the map H(−, t) : V →
M is an open embedding.

Since f is proper there exists r ≤ R such that f−1(∆h
r ) × ∆r ⊂ U ; then the

holomorphic map H : f−1(∆h
r ) × ∆r → f−1(∆h+1

r ) is a biholomorphism (exercise)
giving a trivialization of the family over ∆h+1

r .

Example I.39. Lemma I.38 is generally false if f is not proper (cf. the exercise in
Lecture 1 of [43]).
Consider for instance an irreducible polynomial F ∈ C[x1, . . . , xn, t]; denote by
f : Cn

x × Ct → Ct the projection on the second factor and

V =
{

(x, t)
∣∣∣∣ F (x, t) =

∂F

∂xi
(x, t) = 0, i = 1, . . . , n

}
.



14 I. SMOOTH FAMILIES OF COMPACT COMPLEX MANIFOLDS

Assume that f(V ) is a finite set of points and set B = C − f(V ), X = {(x, t) ∈
Cn × B |F (x, t) = 0}. Then X is a regular hypersurface, the restriction f : X → B
is surjective and its differential is surjective everywhere.
X is closed in the affine variety Cn×B, by Hilbert’s Nullstellensatz there exist regular
functions g1, . . . , gn ∈ O(Cn ×B) such that

g :=
n∑

i=1

gi
∂F

∂xi
≡ 1 (mod F ).

On the open subset U = {g �= 0} the algebraic vector field

χ =
n∑

i=1

gi

g

(
∂F

∂xi

∂

∂t
− ∂F

∂t

∂

∂xi

)
=

∂

∂t
−

n∑
i=1

gi

g

∂F

∂t

∂

∂xi

is tangent to X and lifts
∂

∂t
.

In general the fibres of f : X → B are not biholomorphic: consider for example the
case F (x, y, λ) = y2 − x(x − 1)(x − λ). Then B = C − {0, 1} and f : X → B is the
restriction to the affine subspace x0 �= 0 of the family M → B of Example I.4.
The fibre Xλ = f−1(λ) is Mλ−{point}, where Mλ is an elliptic curve with j-invariant
j(λ) = 28(λ2−λ+1)3λ−2(λ−1)−2. If Xa is biholomorphic to Xb then, by Riemann’s
extension theorem, also Ma is biholomorphic to Mb and then j(a) = j(b).

Exercise I.40. Find a holomorphic vector field χ lifting
∂

∂λ
and tangent to {F =

0} ⊂ C2 × C, where F (x, y, λ) = y2 − x(x − 1)(x − λ) (Hint: use the Euclidean

algorithm to find a, b ∈ C[x] such that ay
∂F

∂y
+ b

∂F

∂x
= 1 + 2aF ). �

Theorem I.41. A deformation M0 →M
f−→(B, b0) of a compact manifold is trivial

if and only if KSf : ΘB,b0 → (R1f∗Tf )b0 is trivial.

Proof. One implication is clear; conversely assume KSf = 0, it is not restrictive
to assume B a polydisk with coordinates t1, . . . , tn and f a smooth family. After a

possible shrinking of B we have KS(B)f

(
∂

∂ti

)
= 0 for every i = 1, . . . , n. According

to I.32 there exist holomorphic vector fields ξi such that f∗ξi =
∂

∂ti
; by I.38 the family

is trivial over a smaller polydisk ∆ ⊂ B.

Note that if a smooth family f : M → B is locally trivial, then for every b ∈ B the
Kodaira-Spencer map KSf : Tb,B → H1(Mb, TMb

) is trivial for every b ∈ B.

Theorem I.42. (Semicontinuity and base change)
Let E → M be a holomorphic vector bundle on the total space of a smooth family
f : M → B. Then, for every i ≥ 0:

1. b �→ hi(Mb, E) is upper semicontinuous.
2. If b �→ hi(Mb, E) is constant, then for every b ∈ B there exists an open neigh-

bourhood b ∈ U and elements e1, . . . , er ∈ H i(f−1(U), E) such that:
(a) H i(f−1(U), E) is the free O(U)-module generated by e1, . . . , en.
(b) e1, . . . , er induce a basis of H i(Mc, E) for every c ∈ U .

3. If b �→ hi−1(Mb, E) and b �→ hi+1(Mb, E) are constant then also b �→ hi(Mb, E)
is constant.

Proof. [4, Ch. 3, Thm. 4.12], [41, I, Thm. 2.2], [37].
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Corollary I.43. Let X be a compact complex manifold. If H1(X, TX) = 0 then
every deformation of X is trivial.

Definition I.44. A compact complex manifold X is called rigid if H1(X, TX) = 0.

Corollary I.45. Let f : M → B a smooth family of compact complex manifolds.
If b �→ h1(Mb, TMb

) is constant and KSf = 0 at every point b ∈ B then the family is
locally trivial.

Proof. (cf. Example I.49) Easy consequence of Theorems I.41 and I.42.

Example I.46. Consider the following family of Hopf surfaces f : M → C, M =
X/G where X = B×(C2−{0}) and G � Z is generated by (b, z1, z2) �→ (b, 2z1, b

2z1+
2z2).

The fibre Mb is the Hopf surface SA(b), where A(b) =
(

2 0
b2 2

)
and then M0 is not

biholomorphic to Mb for every b �= 0.
This family is isomorphic to N ×C B, where B → C is the map b �→ b2 and N is the
quotient of C× (C2−{0}) by the group generated by (s, z1, z2) �→ (s, 2z1, sz1 + 2z2).
By base-change property, the Kodaira-Spencer map KSf : T0,B → H1(M0, TM0) is
trivial.
On the other hand the family is trivial over B − {0}, in fact the map

(B − {0})× (C2 − {0})→ (B − {0})× (C2 − {0}), (b, z1, z2) �→ (b, b2z1, z2)

induces to the quotient an isomorphism (B − {0})×M1 � (M − f−1(0)). Therefore
the Kodaira-Spencer map KSf : Tb,B → H1(Mb, TMb

) is trivial for every b.
According to the base-change theorem the dimension of H1(Mb, TMb

) cannot be con-
stant: in fact it is proved in [41] that h1(M0, TM0) = 4 and h1(Mb, TMb

) = 2 for
b �= 0.

Example I.47. Let M ⊂ Cb × P3
x × P1

u be the subset defined by the equations

u0x1 = u1(x2 − bx0), u0x2 = u1x3,

f : M → C the projection onto the first factor and f∗ : M∗ = (M − f−1(0)) →
(C− {0}) its restriction.
Assume already proved that f is a family (this will be done in the next chapter); we
want to prove that:

1. f∗ is a trivial family.
2. f is not locally trivial at b = 0.

Proof of 1. After the linear change of coordinates x2− bx0 �→ x0 the equations
of M∗ ⊂ C− {0} × P3 × P1 become

u0x1 = u1x0, u0x2 = u1x3

and there exists an isomorphism of families C− {0} × P1
s × P1

u →M∗, given by

(b, [t0, t1], [u0, u1]) �→ (b, [t0u1, t0u0, t1u1, t1u0], [u0, u1]).

Proof of 2. Let Y � P1 ⊂ M0 be the subvariety of equation b = x1 = x2 =
x3 = 0. Assume f locally trivial, then there exist an open neighbourhood 0 ∈ U ⊂ C

and a commutative diagram of holomorphic maps

Y × U
j−→ M�pr

�f

U
i

↪→ C
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where i is the inclusion, j is injective and extends the identity Y × {0} → Y ⊂M0.
Possibly shrinking U it is not restrictive to assume that the image of j is contained
in the open subset V0 = {x0 �= 0}. For b �= 0 the holomorphic map δ : V0 ∩Mb → C3,

δ(b, [x0, x1, x2, x3], [u0, u1]) =
(

x1

x0
,
x2

x0
,
x3

x0

)
,

is injective; therefore for b ∈ U , b �= 0, the holomorphic map δj(−, b) : Y � P1 → C3

is injective. This contradicts the maximum principle of holomorphic functions.

Example I.48. In the notation of Example I.47, the deformation M0 →M
b−→(C, 0)

is not universal: in order to see this it is sufficient to prove that M is isomorphic to
the deformation g∗M , where g : (C, 0)→ (C, 0) is the holomorphic map g(b) = b+ b2.
The equation of g∗M is

u0x1 = u1(x2 − (b + b2)x0), u0x2 = u1x3,

and the isomorphism of deformations g∗M →M is given by

(b, [x0, x1, x2, x3], [u0, u1]) = (b, [(1 + b)x0, x1, x2, x3], [u0, u1]).

Example I.49. Applying the base change C → C, b �→ b2, to the family M → C

of Example I.47 we get a family with trivial KS at every point of the base but not
locally trivial at 0.
We will prove in II.5 that H1(Mb, TMb

) = 0 for b �= 0 and H1(M0, TM0) = C.

6. Historical survey, I

The deformation theory of complex manifolds began in the years 1957-1960 by a
series of papers of Kodaira-Spencer [39], [40], [41] and Kodaira-Nirenberg-Spencer
[38].
The main results of these papers were the completeness and existence theorem for

versal deformations.

Theorem I.50. (Completeness theorem, [40])
A deformation ξ over a smooth germ (B, 0) of a compact complex manifold M0 is
versal if and only if the Kodaira-Spencer map KSξ : T0,B → H1(M0, TM0) is surjective.

Note that if a deformation M0−→M
f−→(B, 0) is versal then we can take a linear

subspace 0 ∈ C ⊂ B making the Kodaira-Spencer map T0,C → H1(M0, TM0) bijec-
tive; by completeness theorem M0 →M ×B C → (C, 0) is semiuniversal.

In general, a compact complex manifold does not have a versal deformation over a
smooth germ. The problem of determining when such a deformation exists is one of
the most difficult in deformation theory.
A partial answer is given by

Theorem I.51. (Existence theorem, [38])
Let M0 be a compact complex manifold. If H2(M0, TM0) = 0 then M0 admits a
semiuniversal deformation over a smooth base.

The condition H2(M0, TM0) = 0 is sufficient but it is quite far from being necessary.
The “majority” of manifolds having a versal deformation over a smooth germ has the
above cohomology group different from 0.

The next problem is to determine when a semiuniversal deformation is universal: a
sufficient (and almost necessary) condition is given by the following theorem.
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Theorem I.52. ([67], [79]) Let ξ : M0−→M−→(B, 0) be a semiuniversal defor-
mation of a compact complex manifold M0. If b �→ h0(Mb, TMb

) is constant (e.g. if
H0(M0, TM0) = 0) then ξ is universal.

Remark I.53. If a compact complex manifold M has finite holomorphic automor-
phisms then H0(M, TM ) = 0, while the converse is generally false (take as an example
the Fermat quartic surface in P3, cf. [71]).

Example I.54. Let M → B be a smooth family of compact complex tori of dimen-
sion n, then TMb

= ⊕n
i=1OMb

and then h0(Mb, TMb
) = n for every b.

Example I.55. If KM0 is ample then, by a theorem of Matsumura [55], H0(M0, TM0) =
0.

Exercise I.56. The deformation M0−→M
f−→C, where f is the family of Exam-

ple I.47, is not universal. �
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CHAPTER II

Deformations of Segre-Hirzebruch surfaces

In this chapter we compute the Kodaira-Spencer map of some particular deforma-
tions and, using the completeness theorem I.50, we give a concrete description of the
semiuniversal deformations of the Segre-Hirzebruch surfaces Fk (Theorem II.28).
As a by-product we get examples of deformation-unstable submanifolds (Defini-
tion II.29). A sufficient condition for stability of submanifolds is the well known
Kodaira stability theorem (Thm. II.30) which is stated without proof in the last sec-
tion.

1. Segre-Hirzebruch surfaces

We consider the following description of the Segre-Hirzebruch surface Fq, q ≥ 0.

Fq = (C2 − {0})× (C2 − {0})/ ∼,

where the equivalence relation ∼ is given by the (C∗)2-action

(l0, l1, t0, t1) �→ (λl0, λl1, λ
qµt0, µt1), λ, µ ∈ C∗.

The projection Fq → P1, [l0, l1, t0, t1] �→ [l0, l1] is well defined and it is a P1-bundle
(cf. Example II.13).
Note that F0 = P1 × P1; Fq is covered by four affine planes C2 � Ui,j = {litj �= 0}.
In this affine covering we define local coordinates according to the following table

U0,0 : z =
l1
l0

, s =
t1l

q
0

t0
U0,1 : z =

l1
l0

, s′ =
t0

t1l
q
0

U1,0 : w =
l0
l1

, y′ =
t1l

q
1

t0
U1,1 : w =

l0
l1

, y =
t0

t1l
q
1

We also denote

V0 = {l0 �= 0} = U0,0 ∪ U0,1, V1 = {l1 �= 0} = U1,0 ∪ U1,1.

We shall call z, s principal affine coordinates and U0,0 principal affine subset. Since
the changes of coordinates are holomorphic, the above affine covering gives a struc-
ture of complex manifold of dimension 2 on Fk.

Exercise II.1. If we consider the analogous construction of Fq with R instead of
C we get Fq=torus for q even and Fq=Klein bottle for q odd. �
Definition II.2. For q > 0 we set σ∞ = {t1 = 0}. Clearly σ∞ is isomorphic to P1.

Proposition II.3. F0 is not homeomorphic to F1.

Marco Manetti: Lectures on deformations of complex manifolds
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Proof. Topologically F0 = S2 × S2 and therefore H2(F0, Z) = Z[S2 × {p}] ⊕
Z[{p} × S2], where p ∈ S2 and [V ] ∈ H2 denotes the homology class of a closed
subvariety V ⊂ S2 × S2 of real dimension 2.
The matrix of the intersection form q : H2 ×H2 → H0 = Z is(

0 1
1 0

)
and therefore q(a, a) is even for every a ∈ H2(F0, Z).
Consider the following subvarieties of F1:

σ = {t0 = 0}, σ′ = {t0 = l0t1}.
σ and σ′ intersect transversely at the point t0 = l0 = 0 and therefore their intersection
product is equal to q([σ], [σ′]) = ±1. On the other hand the continuous map

r : (F1 − σ∞)× [0, 1]→ (F1 − σ∞), r((l0, l1, t0, t1), a) = (l0, l1, at0, t1)

shows that σ is a deformation retract of (F1−σ∞). Since r1 : σ′ → σ is an isomorphism
we have [σ] = [σ′] ∈ H2(F1 − σ∞, Z) and then a fortiori [σ] = [σ′] ∈ H2(F1, Z).
Therefore q([σ], [σ]) = ±1 is not even and F0 cannot be homeomorphic to F1.

It is easy to find projective embeddings of the surfaces Fq;

Example II.4. The Segre-Hirzebruch surface Fq is isomorphic to the subvariety
X ⊂ Pq+1 × P1 of equation

u0(x1, x2, . . . , xq) = u1(x2, x3, . . . , xq+1),

where x0, . . . , xq+1 and u0, u1 are homogeneous coordinates in Pq+1 and P1 respec-
tively.
An isomorphism Fq → X is given by:

u0 = l0, u1 = l1, x0 = t0, xi = t1l
i−1
0 lq+1−i

1 , i = 1, . . . q + 1.

Denote by T → Fq the holomorphic tangent bundle, in order to compute the spaces
H0(Fq, T ) and H1(Fq, T ) we first notice that the open subsets V0, V1 are isomorphic
to C× P1. Explicit isomorphisms are given by

V0 → Cz × P1, (l0, l1, t0, t1) �→
(

z =
l1
l0

, [t0, t1]
)

,

V1 → Cw × P1, (l0, l1, t0, t1) �→
(

w =
l0
l1

, [t0, t1]
)

.

According to Example I.27 H1(Vi, T ) = 0, i = 0, 1, and then H0(Fq, T ) and H1(Fq, T )
are isomorphic, respectively, to the kernel and the cokernel of the Čech differential

H0(V0, T )⊕H0(V1, T ) d−→H0(V0 ∩ V1, T ), d(χ, η) = χ− η.

In the affine coordinates (z, s), (w, y) we have that:

1. H0(V0, T ) is the free O(Cz)-module generated by
∂

∂z
,

∂

∂s
, s

∂

∂s
, s2 ∂

∂s
.

2. H0(V1, T ) is the free O(Cw)-module generated by
∂

∂w
,

∂

∂y
, y

∂

∂y
, y2 ∂

∂y
.

3. H0(V0 ∩ V1, T ) is the free O(Cz − {0})-module generated by
∂

∂z
,

∂

∂s
, s

∂

∂s
,

s2 ∂

∂s
.
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The change of coordinates is given by z = w−1

s = y−1wq

 w = z−1

y = s−1z−q

and then 
∂

∂w
= −z2 ∂

∂z
+ qy−1w−q−1 ∂

∂s
= −z2 ∂

∂z
+ qzs

∂

∂s

∂

∂y
= −y−2wq ∂

∂s
= −zqs2 ∂

∂s

d

∑
i≥0

zi

(
ai

∂

∂z
+ (bi + cis + dis

2)
∂

∂s

)
,
∑
i≥0

wi

(
αi

∂

∂w
+ (βi + γiy + δiy

2)
∂

∂y

) =

=
∑
i≥0

zi

(
ai

∂

∂z
+ bi

∂

∂s
+ cis

∂

∂s
+ dis

2 ∂

∂s

)

+
∑
i≥0

z−i

(
αi

(
z2 ∂

∂z
− qzs

∂

∂s

)
+ βis

2zq ∂

∂s
+ γis

∂

∂s
+ δiz

−q ∂

∂s

)
An easy computation gives the following

Lemma II.5.∑
i∈Z

zi

(
ai

∂

∂z
+ bi

∂

∂s
+ cis

∂

∂s
+ dis

2 ∂

∂s

)
∈ H0(V0 ∩ V1, T )

belongs to the image of the Čech differential if and only if b−1 = b−2 = . . . = b−q+1 =
0. In particular the vector fields

z−h ∂

∂s
∈ H0(V0 ∩ V1, T ), h = 1, . . . , q − 1

represent a basis of H1(Fq, T ) and then h1(Fq, T ) = max(0, q − 1).

Exercise II.6. Prove that h0(Fq, T ) = max(6, q + 5). �
Theorem II.7. If a �= b then Fa is not biholomorphic to Fb.

Proof. Assume a > b. If a ≥ 2 then the dimension of H1(Fa, TFa) is bigger than
the dimension of H1(Fb, TFb

). If a = 1, b = 0 we apply Proposition II.3.

We will show in II.24 that Fa is diffeomorphic to Fb if and only if a− b is even.

2. Decomposable bundles on projective spaces

For n > 0, a ∈ Z we define

OPn(a) = (Cn+1 − 0)× C/C∗,

where the action of the multiplicative group C∗ = C− 0 is

λ(l0, . . . , ln, t) = (λl0, . . . , λln, λat), λ ∈ C∗.

The projection OPn(a)→ Pn, [l0, . . . , ln, t] �→ [l0, . . . , ln], is a holomorphic line bun-
dle. Notice that OPn = OPn(0)→ Pn is the trivial vector bundle of rank 1.
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The obvious projection maps give a commutative diagram

(Cn+1 − 0)× C −→ OPn(a)� �p

(Cn+1 − 0) π−→ Pn

inducing an isomorphism between (Cn+1−0)×C and the fibred product of p and π;
in particular for every open subset U ⊂ Pn the space H0(U,OPn(a)) is naturally iso-
morphic to the space of holomorphic maps f : π−1(U)→ C such that f(λx) = λaf(x)
for every x ∈ π−1(U), λ ∈ C∗.
If U = Pn then, by Hartogs’ theorem, every holomorphic map f : π−1(U)→ C can be
extended to a function f : Cn+1 → C. Considering the power series expansion of f we
get a natural isomorphism between H0(Pn,OPn(a)) and the space of homogeneous
polynomials of degree a in the homogeneous coordinates l0, . . . , ln.

Exercise II.8. Prove that h0(Pn,OPn(a)) =
(
n+a

n

)
. �

Exercise II.9. Under the isomorphism σ∞ = P1 we have Nσ∞/Fq
= OP1(−q). �

On the open set Ui = {li �= 0} the section lai ∈ H0(Ui,OPn(a)) is nowhere 0 and
then gives a trivialization of OPn(a) over Ui. The multiplication maps

H0(Ui,OPn(a))⊗H0(Ui,OPn(b))→ H0(Ui,OPn(a + b)), f ⊗ g �→ fg,

give natural isomorphisms of line bundles

OPn(a)⊗OPn(b) = OPn(a + b), Hom(OPn(a),OPn(b)) = OPn(b− a)

(In particular OPn(a)∨ = OPn(−a).)

Definition II.10. A holomorphic vector bundle E → Pn is called decomposable if
it is isomorphic to a direct sum of line bundles of the form OPn(a).
Equivalently a vector bundle is decomposable if it is isomorphic to

(Cn+1 − 0)× Cr/C∗ → (Cn+1 − 0)/C∗ = Pn,

where the action is λ(l0, . . . , ln, t1, . . . , tr) = (λl0, . . . , λln, λa1t1, . . . , λar tr).

Lemma II.11. Two decomposable bundles of rank r, E = ⊕r
i=1OPn(ai), F = ⊕r

i=1OPn(bi),
a1 ≤ a2, . . . ,≤ ar, b1 ≤ b2, . . . ,≤ br, are isomorphic if and only if ai = bi for every
i = 1, . . . , r.

Proof. Immediate from the formula

h0(Pn, (⊕iOPn(ai))⊗OPn(s)) =
∑

i

h0(Pn,OPn(ai + s)) =
∑

{i | ai+s≥0}

(
ai + s + n

n

)
.

Example II.12. If n ≥ 2 not every holomorphic vector bundle is decomposable.
Consider for example the surjective morphism

φ : ⊕n
i=0 OPn(1)ei → OPn(2),

∑
fiei �→

∑
fili.

We leave it as an exercise to show that the kernel of φ is not decomposable (Hint:
first prove that kerφ is generated by the global sections liej − ljei).

For every holomorphic vector bundle E → X on a complex manifold X we denote
by P(E) → X the projective bundle whose fibre over x ∈ X is P(E)x = P(Ex). If
E → X is trivial over an open subset U ⊂ X then also P(E) is trivial over U ; this
proves that P(E) is a complex manifold and the projection P(E)→ X is proper.
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Example II.13. For every a, b ∈ Z, P(OP1(a)⊕OP1(b)) = F|a−b|.
To see this it is not restrictive to assume a ≥ b; we have

P(OP1(a)⊕OP1(b)) = (C2 − 0)× (C2 − 0)/C∗ × C∗,

where the action is (λ, η)(l0, l1, t0, t1) = (λl0, λl1, λ
aηt0, λ

bηt1). Setting µ = λbη we
recover the definition of Fa−b.
More generally if E → X is a vector bundle and L → X is a line bundle then
P(E ⊗ L) = P(E).

Example II.14. The tangent bundle TP1 is isomorphic to OP1(2). Let l0, l1 be

homogeneous coordinates on P1; s =
l1
l0

, t =
l0
l1

are coordinates on U0 = {l0 �= 0},
U1 = {l1 �= 0} respectively. The sections of TP1 over an open set U correspond to

pairs
(

f0(s)
∂

∂s
, f1(t)

∂

∂t

)
, fi ∈ O(U ∩ Ui), such that f1(t) = −t2f0(t−1).

The isomorphism φ : OP1(2)→ TP1 is given by φ(la0 l
2−a
1 ) =

(
s2−a ∂

∂s
,−ta

∂

∂t

)
.

Theorem II.15 (Euler exact sequence). On the projective space Pn there exists an
exact sequence of vector bundles

0−→OPn

∑
li

∂
∂li−→ ⊕n

i=0 OPn(1)
∂

∂li

φ−→ TPn−→0,

where on the affine open subset lh �= 0, with coordinates si =
li
lh

, i �= h,
φ

(
li

∂

∂lj

)
= si

∂

∂sj
i, j �= h

φ

(
lh

∂

∂lj

)
=

∂

∂sj
j �= h

,


φ

(
li

∂

∂lh

)
= −

∑
j �=h

sisj
∂

∂sj
i �= h

φ

(
lh

∂

∂lh

)
= −

∑
j �=h

sj
∂

∂sj

Proof. The surjectivity of φ is clear. Assume φ

(∑
i,j aijli

∂

∂lj

)
= 0, looking at

the quadratic terms in the set lh �= 0 we get aih = 0 for every i �= h. In the open set
l0 �= 0 we have

φ

(∑
i

aiili
∂

∂li

)
=

n∑
i=1

aiisi
∂

∂si
−

n∑
i=1

a00si
∂

∂si
= 0

and then the matrix aij is a multiple of the identity.

Remark II.16. It is possible to prove that the map φ in the Euler exact sequence
is surjective at the level of global sections, this gives an isomorphism

H0(Pn, TPn) = gl(n + 1, C)/CId = pgl(n + 1, C) = TIdPGL(n + 1, C).

Moreover it is possible to prove that every biholomorphism of Pn is a projectivity
and the integration of holomorphic vector fields corresponds to the exponential map
in the complex Lie group PGL(n + 1, C).

Exercise II.17. Use the Euler exact sequence and the surjectivity of φ on global
sections to prove that for every n ≥ 2 the tangent bundle of Pn is not decomposable.

�
Corollary II.18. The canonical bundle of Pn is KPn = OPn(−n− 1).
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Proof. From the Euler exact sequence we have∧nTPn ⊗OPn =
∧n+1 (⊕n

i=0OPn(1)) = OPn(n + 1)

and then KPn = (
∧nTPn)∨ = OPn(−n− 1).

Exercise II.19. Prove that hn(Pn,OPn(−a)) =
(

a− 1
n

)
. �

Lemma II.20. Let E → P1 be a holomorphic vector bundle of rank r. If:
1. H0(P1, E(s)) = 0 for s << 0, and
2. There exists a constant c ∈ N such that h0(P1, E(s)) ≥ rs− c for s >> 0.

Then E is decomposable.

Proof. Using the assumptions 1 and 2 we may construct recursively a sequence
a1, . . . , ar ∈ Z and sections αi ∈ H0(P1, E(ai)) such that:

1. ah+1 is the minimum integer s such that the map

⊕h
i=1αi :

h⊕
i=1

H0(P1,OP1(s− ai))→ H0(P1, E(s))

is not surjective.
2. αh+1 does not belong to the image of

⊕h
i=1αi :

h⊕
i=1

H0(P1,OP1(ah+1 − ai))→ H0(P1, E(ah+1)).

Notice that a1 ≤ a2 ≤ . . . ≤ ar.
We prove now by induction on h that the morphism of vector bundles

⊕h
i=1αi :

h⊕
i=1
OP1(−ai)→ E

is injective on every fibre; this implies that ⊕r
i=1αi :

⊕r
i=1OP1(−ai) → E is an iso-

morphism.
For h = 0 it is trivial. Assume ⊕h

i=1αi injective on fibres and let p ∈ P1. Choose
homogeneous coordinates l0, l1 such that p = {l1 = 0} and set s = l1/l0.
Assume that there exist c1, . . . , ch ∈ C such that αh+1(p) =

∑
ci(l

ah+1−ai

0 αi)(p) ∈
E(ah+1)p. If e1, . . . , er is a local frame for E at p we have locally

αh+1 −
h∑

i=1

cil
ah+1−ai

0 αi =
r∑

j=1

fj(s)l
ah+1

0 ej

with fj(s) holomorphic functions such that fj(0) = 0.
Therefore fj(s)/s is still holomorphic and l−1

0 (αh+1−
∑

cil
ah+1−ai

0 αi) ∈ H0(P1, E(ah+1−
1)), in contradiction with the minimality of ah+1.

Theorem II.21. Let 0−→E−→F−→G−→0 be an exact sequence of holomorphic
vector bundles on P1.

1. If F, G are decomposable then also E is decomposable.
2. If E = ⊕OP1(−ai) then min(ai) is the minimum integer s such that H0(P1, F (s))→

H0(P1, G(s)) is not injective.

Proof. The kernel of H0(P1, F (s))→ H0(P1, G(s)) is exactly H0(P1, E(s)).
If F = ⊕r

i=1OP1(bi), G = ⊕p
i=1OP1(ci) then for s >> 0 h0(P1, F (s)) = r(s+1)+

∑
bi,

h0(P1, G(s)) = p(s + 1) +
∑

ci and then the rank of E is r − p and h0(P1, E(s)) ≥
(r − p)(s + 1) +

∑
bi −

∑
ci. According to Lemma II.20, the vector bundle E is

decomposable.

We also state, without proof, the following

Theorem II.22. 1. Every holomorphic line bundle on Pn is decomposable.
2. (Serre) Let E be a holomorphic vector bundle on Pn, then:
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(a) H0(Pn, E(s)) = 0 for s << 0.
(b) E(s) is generated by global sections and Hp(Pn, E(s)) = 0 for p > 0,

s >> 0.
3. (Bott vanishing theorem) For every 0 < p < n:

Hp(Pn,Ωq(a)) =


C if p = q, a = 0

0 otherwise

Moreover H0(Pn,Ωq(a)) = Hn(Pn,Ωn−q(−a))∨ = 0 whenever a < q.

Proof. [37]

3. Semiuniversal families of Segre-Hirzebruch surfaces

Let q > 0 be a fixed integer, define M ⊂ C
q−1
t × P1

l × P
q+1
x as the set of points

of homogeneous coordinates (t2, . . . , tq, [l0, l1], [x0, . . . , xq+1]) satisfying the vectorial
equation

l0(x1, x2, . . . , xq) = l1(x2 − t2x0, . . . , xq − tqx0, xq+1).(1)

We denote by f : M → Cq−1, p : M → Cq−1 × P1
l the projections.

Lemma II.23. There exists a holomorphic vector bundle of rank 2, E → Cq−1 × P1
l

such that the map p : M → Cq−1 × P1
l is a smooth family isomorphic to P(E) →

Cq−1 × P1
l .

Proof. Let π : Cq−1 × P1
l → P1

l be the projection; define E as the kernel of the
morphism of vector bundles over Cq−1 × P1

l
q+1⊕
i=0

π∗OP1
A−→

q⊕
i=1

π∗OP1(1),

A(t2, . . . , tq, [l0, l1])


x0

x1
...

xq+1

 =


l0x1 − l1(x2 − t2x0)
l0x2 − l1(x3 − t3x0)

...
l0xq − l1xq+1

 .

We first note that A is surjective on every fibre, in fact for fixed t2, . . . , tq, l0, l1 ∈ C,

A(ti, lj) is represented by the matrix
t2l1 l0 −l1 . . . 0 0
t3l1 0 l0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . l0 −l1

 .

Since either l0 �= 0 or l1 �= 0 the above matrix has maximal rank.
By definition we have that M is the set of points of x ∈ P(⊕q+1

i=0 π∗OP1) such that
A(x) = 0 and then M = P(E).

For every k ≥ 0 denote by Tk ⊂ C
q−1
t the subset of points of coordinates (t2, . . . , tq)

such that there exists a nonzero (q +2)-uple of homogeneous polynomials of degree k

(x0(l0, l1), . . . , xq+1(l0, l1))
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which satisfy identically (t being fixed) the Equation 1. Note that t ∈ Tk if and only
if there exists a nontrivial morphism OP1(−k) → Et and then t ∈ Tk if and only if
−k ≤ −a. Therefore t ∈ Tk − Tk−1 if and only if a = k.

Lemma II.24. In the notation above:
1. T0 = {0}.
2. Tk ⊂ Tk+1.
3. If 2k + 1 ≥ q then Tk = Cq−1.
4. If 2k ≤ q and t ∈ Tk − Tk−1 then Mt = Fq−2k.

Proof. 1 and 2 are trivial.
Denoting by Sk ⊂ C[l0, l1] the space of homogeneous polynomials of degree k, dimC Sk =
k + 1; interpreting Equation 1 as a linear map (depending on the parameter t)
Ak(t) : Sq+2

k → Sq
k+1, we have that t ∈ Tk if and only if kerAk(t) �= 0.

Since (q + 2)(k + 1) > q(k + 2) whenever 2k > q − 2, item 3 follows immediately.
Let Et be the restriction of the vector bundle E to {t} × P1, Et is the kernel of the
surjective morphism A(t) : ⊕q+1

i=0 OP1 → ⊕q
i=1OP1(1). According to Theorem II.21, Et

is decomposable. Since
∧2 Et = OP1(−q) we have Et = OP1(−a) ⊕ OP1(a − q) with

−a ≤ a− q and Mt = P(Et) = Fq−2a.

Lemma II.25. In the notation above (t2, . . . , tq) ∈ Tk if and only if there exists a
nonzero triple (x0, x1, xq+1) ∈ ⊕C[s] of polynomials of degree ≤ k such that

xq+1 = sqx1 + x0

(
q∑

i=2

tis
q+1−i

)
.

Proof. Setting s = l0/l1 we have by definition that (t2, . . . , tq) ∈ Tk if and only
if there exists a nontrivial sequence x0, . . . , xq+1 ∈ C[s] of polynomials of degree ≤ k
such that xi+1 = sxi + ti+1x0 for every i = 1, . . . , q (tq+1 = 0 by convention). Clearly
this set of equation is equivalent to xi+1 = six1 + x0

∑i
j=1 tj+1s

i−j .
Given x0, x1, xq+1 as in the statement, we can define recursively xi = s−1(xi+1 −
ti+1x0) and the sequence x0, . . . , xq−1 satisfies the defining equation of Tk.

Corollary II.26. (t2, . . . , tq) ∈ Tk if and only if the (q − k − 1)× (k + 1) matrix
Bk(t)ij = (tq−k−i+j) has rank ≤ k.

Proof. If 2k + 1 ≤ q then Tk = Cq−1, q − k − 1 ≤ k and the result is trivial:
thus it is not restrictive to assume k + 1 ≤ q − k − 1 and then rankBk(t) ≤ k if and
only if kerBk(t) �= 0.
We note that if x0, x1, xq+1 satisfy the equation xq+1 = sqx1 + x0(

∑q
i=2 tis

q+1−i)
then x1, xq+1 are uniquely determined by x0; conversely a polynomial x0(s) of degree
≤ k can be extended to a solution of the equation if and only if all the coefficients
of sk+1, sk+2, . . . , sq−1 in the polynomial x0(

∑q
i=2 tis

q+1−i) vanish. Writing x0 =
a0 + a1s + . . . + aks

k, this last condition is equivalent to (a0, . . . , ak) ∈ kerBk(t).

Therefore Tk is defined by the vanishing of the
(

q − k − 1
k + 1

)
minors of Bk(t), each

one of which is a homogeneous polynomial of degree k + 1 in t2, . . . , tq. In particular
Tk is an algebraic cone.

As an immediate consequence of Corollary II.26 we have that for q ≥ 2, 0 < 2k ≤ q,
the subset {tk+1 �= 0, tk+2 = tk+3 = . . . = tq = 0} is contained in Tk − Tk−1. In
particular Fq is diffeomorphic to Fq−2k for every k ≤ q/2.
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Proposition II.27. If 2k < q then Tk is an irreducible affine variety of dimension
2k.

Proof. Denote

Zk = {([v], t) ∈ Pk × Cq−1 |v ∈ Ck+1 − 0, Bk(t)v = 0}

and by p : Zk → Tk the projection on the second factor. p is surjective and if tk+1 = 1,
ti = 0 for i �= k + 1, then Bk(t) has rank k and p−1(t) is one point. Therefore it is
sufficient to prove that Zk is an irreducible variety of dimension 2k.
Let π : Zk → Pk be the projection. We have ([a0, . . . , ak], (t2, . . . , tq)) ∈ Zk if and
only if for every i = 1, . . . , q − k − 1

0 =
k∑

j=0

ti+1+jaj =
q∑

l=2

tlal−i−1,

where al = 0 for l < 0, l > k and then the fibre over [a0, . . . , ak] is the kernel of
the matrix Aij = (aj−i−1) i = 1, . . . , q − k − 1, j = 2, . . . , q. Since at least one ai

is �= 0 the rank of Aij is exactly q − k − 1 and then the fibre is a vector subspace of
dimension k. By a general result in algebraic geometry [72],[51] Z is an irreducible
variety of dimension 2k.

Theorem II.28. In the above notation the Kodaira-Spencer map KSf : T0,Cq−1 →
H1(M0, TM0) is bijective for every q ≥ 1 and therefore, by completeness theorem I.50,
deformation Fq →M → (Cq−1, 0) is semiuniversal.

Proof. We have seen that M0 = Fq. Let V0, V1 ⊂ Fq be the open subset defined
in Section 1. Denote Mi ⊂M the open subset {li �= 0}, i = 0, 1.
We have an isomorphism φ0 : Cq−1×V0 →M0, commuting with the projections onto
Cq−1, given in the affine coordinates (z, s) by:

l0 = 1, l1 = z, x0 = 1, xh = zq−h+1s−
q−h∑
j=1

th+jz
j = z(xh+1 − th+1x0), h > 0.

Similarly there exists an isomorphism φ1 : Cq−1 × V1 →M1,

l0 = w, l1 = 1, x0 = y, xh = wh−1 + y
h∑

j=2

tjw
h−j = wxh−1 + thx0, h > 0.

In the intersection M0 ∩M1 we have:
z = w−1

s =
xq+1

x0
= y−1wq +

q∑
j=2

tjw
q+1−j .

According to Formula I.33, for every h = 2, . . . , q

KSf

(
∂

∂th

)
=

∂w−1

∂th

∂

∂z
+

∂(y−1wq +
∑q

j=2 tjw
q+1−j)

∂th

∂

∂s
= zh−q−1 ∂

∂s
.
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4. Historical survey, II

One of the most famous theorems in deformation theory (at least in algebraic ge-
ometry) is the stability theorem of submanifolds proved by Kodaira in 1963.

Definition II.29. Let Y be a closed submanifold of a compact complex manifold X.
Y is called stable if for every deformation X

i−→X f−→(B, 0) there exists a deformation

Y
j−→Y g−→(B, 0) and a commutative diagram of holomorphic maps

Y
j ��

i|X
��

Y

����
��

��
�

g

��
X

f �� B

The same argument used in Example I.46 shows that σ∞ ⊂ Fq is not stable for
every q ≥ 2, while σ∞ ⊂ F1 is stable because F1 is rigid.

Theorem II.30. (Kodaira stability theorem for submanifolds, [36])
Let Y be a closed submanifold of a compact complex manifold X. If H1(Y, NY/X) = 0
then Y is stable.

Just to check Theorem II.30 in a concrete case, note that h1(σ∞, Nσ∞/Fq
) = max(0, q−

1).

Theorem II.30 has been generalized to arbitrary holomorphic maps of compact com-
plex manifolds in a series of papers by Horikawa [30].

Definition II.31. Let α : Y → X be a holomorphic map of compact complex mani-
folds. A deformation of α over a germ (B, 0) is a commutative diagram of holomorphic
maps

Y
i−→ Y f−→ B�α

� �Id

X
j−→ X g−→ B

where Y
i−→Y f−→(B, 0) and X

j−→X g−→(B, 0) are deformations of Y and X respec-
tively.

Definition II.32. In the notation of II.31, the map α is called:
1. Stable if every deformation of X can be extended to a deformation of α.
2. Costable if every deformation of Y can be extended to a deformation of α.

Consider two locally finite coverings U = {Ua}, V = {Va}, a ∈ I, Y = ∪Ua, X = ∪Va

such that Ua, Va are biholomorphic to polydisks and α(Ua) ⊂ Va for every a (Ua is
allowed to be the empty set).
Given a ∈ I and local coordinate systems (z1, . . . , zm) : Ua → Cm, (u1, . . . , un) : Va →

Cn we have linear morphisms of vector spaces

α∗ : Γ(Va, TX)→ Γ(Ua, α
∗TX), α∗

(∑
i gi

∂

∂ui

)
=

∑
i α

∗(gi)
∂

∂ui

α∗ : Γ(Ua, TY )→ Γ(Ua, α
∗TX), α∗

(∑
i hi

∂

∂zi

)
=

∑
i,j hi

∂uj

∂zi

∂

∂uj
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Define H∗(α∗) as the cohomology of the complex

0−→C0(U , TY ) d0−→C1(U , TY )⊕ C0(U , α∗TX) d1−→ . . .

where di(f, g) = (df, dg + (−1)iα∗f), being d the usual Čech differential.

Similarly define H∗(α∗) as the cohomology of the complex

0−→C0(V, TX) d0−→C1(V, TX)⊕ C0(U , α∗TX) d1−→ . . .

where di(f, g) = (df, dg + (−1)iα∗f).

Theorem II.33 (Horikawa). The groups Hk(α∗) and Hk(α∗) do not depend on the
choice of the coverings U ,V. Moreover:

1. If H2(α∗) = 0 then α is stable.
2. If H2(α∗) = 0 then α is costable.

Exercise II.34. Give a Dolbeault-type definition of the groups Hk(α∗), Hk(α∗).
�

Exercise II.35. If α : Y → X is a regular embedding then Hk(α∗) = Hk−1(Y, NY/X).
(Hint: take Ua = Va ∩ Y , and local systems of coordinates u1, . . . , un such that
Y = {um+1 = . . . = un = 0}. Then prove that the projection maps Ck+1(U , TY ) ⊕
Ck(U , α∗TX)→ Ck(U , NY/X) give a quasiisomorphism of complexes. �
The following (non trivial) exercise is reserved to experts in algebraic geometry:

Exercise II.36. Let α : Y → Alb(Y ) be the Albanese map of a complex projective
manifold Y . If X = α(Y ) is a curve then α : Y → X is costable. �
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CHAPTER III

Analytic singularities

Historically, a major step in deformation theory has been the introduction of defor-
mations of complex manifolds over (possibly non reduced) analytic singularities.
This chapter is a short introductory course on analytic algebras and analytic sin-
gularities; moreover we give an elementary proof of the Nullstellenstaz for the ring
C{z1, . . . , zn} of convergent complex power series.
Quite important in deformation theory are the smoothness criterion III.7 and the
two dimension bounds III.40 and III.41.

1. Analytic algebras

Let C{z1, . . . , zn} be the ring of convergent power series with complex coefficient.
Every f ∈ C{z1, . . . , zn} defines a holomorphic function in a nonempty open neigh-
bourhood U of 0 ∈ Cn; for notational simplicity we still denote by f : U → C this
function.

If f is a holomorphic function in a neighbourhood of 0 and f(0) �= 0 then 1/f is
holomorphic in a (possibly smaller) neighbourhood of 0. This implies that f is in-
vertible in C{z1, . . . , zn} if and only if f(0) �= 0 and therefore C{z1, . . . , zn} is a local
ring with maximal ideal m = {f | f(0) = 0}. The ideal m is generated by z1, . . . , zn.

Definition III.1. The multiplicity of a power series f ∈ C{z1, . . . , zn} is defined
as

µ(f) = sup{s ∈ N | f ∈ m
s} ∈ N ∪ {+∞}.

The valuation ν(S) of a nonempty subset S ⊂ C{z1, . . . , zn} is

ν(S) = sup{s ∈ N |S ⊂ m
s} = inf{µ(f) | f ∈ S} ∈ N ∪ {+∞}.

We note that ν(S) = +∞ if and only if S = {0} and µ(f) is the smallest integer d
such that the power series expansion of f contains a nontrivial homogeneous part of
degree d.
The local ring C{z1, . . . , zn} has the following important properties:
• C{z1, . . . , zn} is Noetherian ([28, II.B.9], [24]).
• C{z1, . . . , zn} is a unique factorization domain ([28, II.B.7], [24]).
• C{z1, . . . , zn} is a Henselian ring ([51], [23], [24]).
• C{z1, . . . , zn} is a regular local ring of dimension n (see e.g. [3], [24], [56] for

the basics about dimension theory of local Noetherian ring).
We recall, for the reader’s convenience, that the dimension of a local Noetherian ring

A with maximal ideal m is the minimum integer d such that there exist f1, . . . , fd ∈ m

with the property
√

(f1, . . . , fd) = m. In particular dimA = 0 if and only if
√

0 = m,
i.e. if and only if m is nilpotent.

Marco Manetti: Lectures on deformations of complex manifolds
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We also recall that a morphism of local rings f : (A,m) → (B, n) is called local if
f(m) ⊂ n.

Definition III.2. A local C-algebra is called an analytic algebra if it is isomorphic
to C{z1, . . . , zn}/I, for some n ≥ 0 and some ideal I ⊂ (z1, . . . , zn).
We denote by An the category with objects the analytic algebras and morphisms the
local morphisms of C-algebras.

Every analytic algebra is a local Noetherian ring. Every local Artinian C-algebra
with residue field C is an analytic algebra.

The ring C{z1, . . . , zn} is, in some sense, a free object in the category An as ex-
plained in the following lemma

Lemma III.3. Let (R, m) be an analytic algebra. Then the map

MorAn(C{z1, . . . , zn}, R)→ m× . . .×m︸ ︷︷ ︸
n factors

, f �→ (f(z1), . . . , f(zn))

is bijective.

Proof. We first note that, by the lemma of Artin-Rees ([3, 10.19]), ∩nmn = 0
and then every local homomorphism f : C{z1, . . . , zn} → R is uniquely determined
by its factorizations

fs : C{z1, . . . , zn}/(z1, . . . , zn)s → R/m
s.

Since C{z1, . . . , zn}/(z1, . . . , zn)s is a C-algebra generated by z1, . . . , zn, every fs is
uniquely determined by f(zi); this proves the injectivity.
For the surjectivity it is not restrictive to assume R = C{u1, . . . , um}; given φ =
(φ1, . . . , φn), φi ∈ m, let U be an open subset 0 ∈ U ⊂ Cm

u where the φi =
φi(u1, . . . , um) are convergent power series. The map φ = (φ1, . . . , φn) : U → Cn

is holomorphic, φ(0) = 0 and φ∗(zi) = φi.

Another important and useful tool is the following

Theorem III.4 (Rückert’s nullstellensatz). Let I, J ⊂ C{z1, . . . , zn} be proper ideals,
then

MorAn(C{z1, . . . , zn}/I, C{t}) = MorAn(C{z1, . . . , zn}/J, C{t}) ⇐⇒
√

I =
√

J,

where the left equality is intended as equality of subsets of MorAn(C{z1, . . . , zn}, C{t})
A proof of Theorem III.4 will be given in Section 4.

Lemma III.5. Every analytic algebra is isomorphic to C{z1, . . . , zk}/I for some k ≥
0 and some ideal I ⊂ (z1, . . . , zk)2.

Proof. Let A = C{z1, . . . , zn}/I be an analytic algebra such that I is not

contained in (z1, . . . , zn)2; then there exists u ∈ I and an index i such that
∂u

∂zi
(0) �= 0.

Up to permutation of indices we may suppose i = n and then, by inverse function
theorem z1, . . . , zn−1, u is a system of local holomorphic coordinates. Therefore A is
isomorphic to C{z1, . . . , zn−1}/Ic, where Ic is the kernel of the surjective morphism

C{z1, . . . , zn−1} → C{z1, . . . , zn−1, u}/I = A.

The conclusion follows by induction on n.

Definition III.6. An analytic algebra is called smooth if it is isomorphic to the
power series algebra C{z1, . . . , zk} for some k ≥ 0.
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Proposition III.7. Let R = C{z1, . . . , zk}/I, I ⊂ (z1, . . . , zk)2, be an analytic
algebra.
The following conditions are equivalent:

1. I = 0.
2. R is smooth.
3. for every surjective morphism of analytic algebras B → A, the morphism

MorAn(R, B)→ MorAn(R, A)

is surjective.
4. for every n ≥ 2 the morphism

MorAn(R, C{t}/(tn))→ MorAn(R, C{t}/(t2))
is surjective.

Proof. [1 ⇒ 2] and [3 ⇒ 4] are trivial, while [2 ⇒ 3] is an immediate conse-
quence of the Lemma III.3.
To prove [4 ⇒ 1], assume I �= 0 and let s = ν(I) ≥ 2 be the valuation of I, i.e. the
greatest integer s such that I ⊂ (z1, . . . , zk)s: we claim that MorAn(R, C[t]/(ts+1))→
MorAn(R, C[t]/(t2)) is not surjective.
Choosing f ∈ I − (z1, . . . , zk)s+1, after a possible generic linear change of coordi-
nates of the form zi �→ zi + aiz1, a2, . . . , ak ∈ C, we may assume that f contains the
monomial zs

1 with a nonzero coefficient, say f = czs
1 + . . . ; let α : R → C[t]/(t2) be

the morphism defined by α(z1) = t, α(zi) = 0 for i > 1.
Assume that there exists β : R → C[t]/(ts+1) that lifts α, then β(z1) − t, β(z2), . . . ,
β(zk) ∈ (t2) and therefore β(f) ≡ cts (mod ts+1).

Lemma III.8. For every analytic algebra R with maximal ideal m there exist natural
isomorphisms

HomC(m/m2, C) = DerC(R, C) = MorAn(R, C[t]/(t2)).

Proof. Exercise.

Exercise III.9. The ring of entire holomorphic functions f : C → C is an integral
domain but it is not factorial (Hint: consider the sine function sin(z)).
For every connected open subset U ⊂ Cn, the ring O(U) is integrally closed in its
field of fractions (Hint: Riemann extension theorem). �

2. Analytic singularities and fat points

Let M be a complex manifold, as in Chapter I we denote by OM,x the ring of germs
of holomorphic functions at a point x ∈M . The elements of OM,x are the equivalence
classes of pairs (U, g), where U is open, x ∈ U ⊂ M , g : U → C is holomorphic and
(U, g) ∼ (V, h) if there exists an open subset W , x ∈W ⊂ U∩V such that g|W = h|W .
By definition of holomorphic function and the identity principle we have that OCn,0

is isomorphic to the ring of convergent power series C{z1, . . . , zn}.

Let f : M → N be a holomorphic map of complex manifolds, for every open subset
V ⊂ N we have a homomorphism of C-algebras

f∗ : Γ(V,ON )→ Γ(f−1(V ),OM ), f∗g = g ◦ f

If x ∈ M then the limit above maps f∗, for V varying over all the open neighbour-
hood of y = f(x), gives a local homomorphism of local C-algebras f∗ : ON,y → OM,x.
It is clear that f∗ : ON,y → OM,x depends only on the behavior of f in a neighbour-
hood of x and then depends only on the class of f in the space MorGer((M, x), (N, y)).
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A choice of local holomorphic coordinates z1, . . . , zn on M such that zi(x) = 0,
gives an invertible morphism in MorGer((M, x), (Cn, 0)) and then an isomorphism
OM,x = C{z1, . . . , zn}.
Exercise III.10. Given f, g ∈ MorGer((M, x), (N, y)), prove that f = g if and only

if f∗ = g∗. �
Definition III.11. An analytic singularity is a triple (M, x, I) where M is a com-

plex manifold, x ∈M is a point and I ⊂ OM,x is a proper ideal.
The germ morphisms MorGer((M, x, I), (N, y, J)) are the equivalence classes of mor-
phisms f ∈ MorGer((M, x), (N, y)) such that f∗(J) ⊂ I and f ∼ g if and only if
f∗ = g∗ : ON,y/J → OM,x/I.
We denote by Ger the category of analytic singularities (also called germs of complex
spaces).

Lemma III.12. The contravariant functor Ger→ An,

Ob(Ger)→ Ob(An), (M, x, I) �→ OM,x/I;

MorGer((M, x, I), (N, y, J))→ MorAn

(ON,y

J
,
OM,x

I

)
, f �→ f∗;

is an equivalence of categories. Its “inverse” An → Ger (cf. [49, 1.4]) is called
Spec (sometimes Specan).

Proof. Since C{z1, . . . , zn}/I is isomorphic to OCn,0/I the above functor is
surjective on isomorphism classes.
We only need to prove that MorGer((M, x, I), (N, y, J)) → MorAn(ON,y/J,OM,x/I)
is surjective, being injective by definition of MorGer. To see this it is not restrictive
to assume (M, x) = (Cm

u , 0), (N, y) = (Cn
z , 0).

Let g∗ : C{z1, . . . , zn}/J → C{u1, . . . , um}/I be a local homomorphism and choose,
for every i = 1, . . . , n, a convergent power series fi ∈ C{u1, . . . , um} such that
fi ≡ g∗(zi) (mod I). Note that fi(0) = 0.
If U is an open set, 0 ∈ U ⊂ Cm, such that fi are convergent in U , then we may define
a holomorphic map f = (f1, . . . , fn) : U → Cn. By construction f∗(zi) = g∗(zi) ∈
C{u1, . . . , um}/I and then by Lemma III.3 f∗ = g∗.

Definition III.13. Given an analytic singularity (X, x) = (M, x, I), the analytic
algebra OX,x := OM,x/I is called the algebra of germs of analytic functions of (X, x).
The dimension of (X, x) is by definition the dimension of the analytic algebra OX,x.

Definition III.14. A fat point is an analytic singularity of dimension 0.

Lemma III.15. Let X = (M, x, I) be an analytic singularity; the following condi-
tions are equivalent.

1. The maximal ideal of OX,x is nilpotent.
2. X is a fat point.
3. The ideal I contains a power of the maximal ideal of OM,x.
4. If V is open, x ∈ V ⊂ M , and f1, . . . , fh : V → C are holomorphic functions

generating the ideal I, then there exists an open neighbourhood U ⊂ V of x
such that

U ∩ {f1 = . . . = fh = 0} = {x}.
5. MorAn(OX,x, C{t}) contains only the trivial morphism f �→ f(0) ∈ C ⊂ C{t}.
Proof. [1⇔ 2⇔ 3] are trivial.

[3 ⇒ 4] It is not restrictive to assume that V is contained in a coordinate chart;
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let z1, . . . , zn : V → C be holomorphic coordinates with zi(x) = 0 for every i. If
3 holds then there exists s > 0 such that zs

i ∈ I and then there exists an open
subset x ∈ U ⊂ V and holomorphic functions aij : U → C such that zs

i =
∑

j aijfj .
Therefore U ∩ V ∩ {f1 = . . . = fh = 0} ⊂ U ∩ {zs

1 = . . . = zs
n = 0} = {x}.

[4 ⇒ 5] Let φ : (C, 0) → (M, x) be a germ of holomorphic map such that φ∗(I) = 0.
If φ is defined in an open subset W ⊂ C and φ(W ) ⊂ U then φ∗(I) = 0 implies
φ(W ) ⊂ U ∩ {f1 = . . . = fh = 0} and therefore MorGer((C, 0, 0), (M, x, I)) contains
only the constant morphism.
[5⇒ 1] is a consequence of Theorem III.4 (with J = mM,x).

Exercise III.16. If f ∈ MorGer((M, x, I), (N, y, J)) we define the schematic fibre
f−1(y) as the singularity (M, x, I + f∗mN,y).
Prove that the dimension of a singularity (M, x, I) is the minimum integer d such
that there exists a morphism f ∈ MorGer((M, x, I), (Cd, 0, 0)) such that f−1(0) is a
fat point. �
Definition III.17. The Zariski tangent space Tx,X of an analytic singularity (X, x)

is the C-vector space DerC(OX,x, C).

Note that every morphism of singularities (X, x)→ (Y, y) induces a linear morphism
of Zariski tangent spaces Tx,X → Ty,Y .

Exercise III.18. (Cartan’s Lemma)
Let (R, m) be an analytic algebra and G ⊂ Aut(R) a finite group of automorphisms.
Denote n = dimC m/m2.
Prove that there exists an injective homomorphism of groups G → GL(Cn) and a
G-isomorphism of analytic algebras R � OCn,0/I for some G-stable ideal I ⊂ OCn,0.
(Hint: there exists a direct sum decomposition m = V ⊕ m2 such that gV ⊂ V for
every g ∈ G.) �

3. The resultant

Let A be a commutative unitary ring and p ∈ A[t] a monic polynomial of degree d.
It is easy to see that A[t]/(p) is a free A-module of rank d with basis 1, t, . . . , td−1.
For every f ∈ A[t] we denote by R(p, f) ∈ A the determinant of the multiplication
map f : A[t]/(p)→ A[t]/(p).

Definition III.19. In the notation above, the element R(p, f) is called the resultant
of p and f .

If φ : A → B is a morphism of unitary rings then we can extend it to a morphism
φ : A[t] → B[t], φ(t) = t, and it is clear from the definition that R(φ(p), φ(f)) =
φ(R(p, f)).
By Binet’s theorem R(p, fg) = R(p, f)R(p, g).

Lemma III.20. In the notation above there exist α, β ∈ A[t] with deg α < deg f ,
deg β < deg p such that R(p, f) = βf − αp. In particular R(p, f) belongs to the ideal
generated by p and f .

Proof. For every i, j = 0, . . . , d− 1 there exist hi ∈ A[t] and cij ∈ A such that

tif = hip +
d−1∑
j=0

cijt
j , deg hi < deg f.
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By definition R(p, f) = det(cij); if (Cij) is the adjoint matrix of (cij) we have, by
Laplace formula, for every j = 0, . . . , d− 1∑

i

C0icij = δ0jR(p, f)

and then

R(p, f) =
d−1∑
i=0

C0i(tif − hip) = βf − αp.

Lemma III.21. In the notation above, if A is an integral domain and p, f have a
common factor of positive degree then R(p, f) = 0. The converse hold if A is a unique
factorization domain.

Proof. Since A injects into its fraction field, the multiplication f : A[t]/(p) →
A[t]/(p) is injective if and only if R(p, f) �= 0.
If p = qr with deg r < deg p, then the multiplication q : A[t]/(p) → A[t]/(p) is not
injective and then its determinant is trivial. If q also divides f then, by the theorem
of Binet also R(p, f) = 0.
Assume now that A is a unique factorization domain and R(p, f) = 0. There exists
q �∈ (p) such that fq ∈ (p); by Gauss’ lemma A[t] is a UFD and then there exists a
irreducible factor p1 of p dividing f . Since p is a monic polynomial the degree of p1

is positive.

Lemma III.22. Let A be an integral domain and 0 �= p ⊂ A[t] a prime ideal such
that p ∩ A = 0. Denote by K the fraction field of A and by pe ⊂ K[x] the ideal
generated by p.
Then:

1. pe is a prime ideal.
2. pe ∩A[x] = p.
3. There exists f ∈ p such that for every monic polynomial p �∈ p we have

R(p, f) �= 0.

Proof. [1] We have pe =
{ p

a

∣∣∣ p ∈ p, a ∈ A− {0}
}

. If
p1

a1

p2

a2
∈ p

e with pi ∈ A[x],

ai ∈ A; then there exists a ∈ A − {0} such that ap1p2 ∈ p. Since p ∩ A = 0 it must
be p1 ∈ p or p2 ∈ p. This shows that pe is prime.
[2] If q ∈ pe ∩ A[x], then there exists a ∈ A, a �= 0 such that aq ∈ p and therefore
q ∈ p.
[3] Let f ∈ p− {0} be of minimal degree, since K[t] is an Euclidean ring, pe = fK[t]
and, since pe is prime, f is irreducible in K[t]. If p ∈ A[t] \ p is a monic polynomial
then p �∈ pe = fK[t] and then, according to Lemma III.21, R(p, f) �= 0.

Theorem III.23. Let A be a unitary ring, p ⊂ A[t] a prime ideal, q = A ∩ p.
If p �= q[t] (e.g. if p is proper and contains a monic polynomial) then there exists
f ∈ p such that for every monic polynomial p �∈ p we have R(p, f) �∈ q.
If moreover A is a unique factorization domain we can choose f irreducible.

Proof. q is prime and q[t] ⊂ p, therefore the image of p in (A/q)[t] = A[t]/q[t]
is still a prime ideal satisfying the hypothesis of Lemma III.22.
It is therefore sufficient to take f as any lifting of the element described in Lemma III.22
and use the functorial properties of the resultant. If A is UFD and f is not irreducible
we can write f = hg with g ∈ p irreducible; but R(p, f) = R(p, h)R(p, g) and then
also R(p, g) �∈ q.
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Exercise III.24. If p, q ∈ A[t] are monic polynomials of degrees d, l > 0 then for
every f ∈ A[t] we have R(pq, f) = R(p, f)R(q, f). (Hint: write the matrix of the
multiplication f : A[t]/(pq) → A[t]/(pq) in the basis 1, t, . . . , td−1, p, tp, . . . , tl−1p.)

�

4. Rückert’s Nullstellensatz

The aim of this section is to prove the following theorem, also called Curve selection
lemma, which is easily seen to be equivalent to Theorem III.4. The proof given here
is a particular case of the one sketched in [51].

Theorem III.25. Let p ⊂ C{z1, . . . , zn} be a proper prime ideal and h �∈ p. Then
there exists a homomorphism of local C-algebras φ : C{z1, . . . , zn} → C{t} such that
φ(p) = 0 and φ(h) �= 0.

Corollary III.26. Let I ⊂ C{z1, . . . , zn} be a proper ideal and h �∈
√

I. Then
there exists a homomorphism of local C-algebras φ : C{z1, . . . , zn} → C{t} such that
φ(I) = 0 and φ(h) �= 0.

Proof. If h �∈
√

I there exists (cf. [3]) a prime ideal p such that I ⊂ p and
h �∈ p.

Before proving Theorem III.25 we need a series of results that are of independent
interest. We recall the following

Definition III.27. A power series p ∈ C{z1, . . . , zn, t} is called a Weierstrass poly-
nomial in t of degree d ≥ 0 if

p = td +
d−1∑
i=0

pi(z1, . . . , zn)ti, pi(0) = 0.

In particular if p(z1, . . . , zn, t) is a Weierstrass polynomial in t of degree d then
p(0, . . . , 0, t) = td.

Theorem III.28 (Preparation theorem). Let f ∈ C{z1, . . . , zn, t} be a power series
such that f(0, . . . , 0, t) �= 0. Then there exists a unique e ∈ C{z1, . . . , zn, t} such that
e(0) �= 0 and ef is a Weierstrass polynomial in t.

Proof. For the proof we refer to [23], [24], [26], [37], [28], [51]. We note that
the condition that the power series µ(t) = f(0, . . . , 0, t) is not trivial is also necessary
and that the degree of ef in t is equal to the multiplicity at 0 of µ.

Corollary III.29. Let f ∈ C{z1, . . . , zn} be a power series of multiplicity d. Then,
after a possible generic linear change of coordinates there exists e ∈ C{z1, . . . , zn}
such that e(0) �= 0 and ef is a Weierstrass polynomial of degree d in zn.

Proof. After a generic change of coordinates of the form zi �→ zi + aizn, ai ∈ C,
the series f(0, . . . , 0, zn) has multiplicity d.

Lemma III.30. Let f, g ∈ C{x1, . . . , xn}[t] be polynomials in t with g in Weierstrass’
form. if f = hg for some h ∈ C{x1, . . . , xn, t} then h ∈ C{x1, . . . , xn}[t].

We note that if g is not a Weierstrass polynomial then the above result is false;
consider for instance the case n = 0, f = t3, g = t + t2.
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Proof. Write g = ts+
∑

gi(x)ts−i, gi(0) = 0, f =
∑r

i=0 fi(x)tr−i h =
∑

i hi(x)ti,
we need to prove that hi = 0 for every i > r − s.
Assume the contrary and choose an index j > r − s such that the multiplicity of hj

takes the minimum among all the multiplicities of the power series hi, i > r − s.
From the equality 0 = hj +

∑
i>0 gihj+i we get a contradiction.

Lemma III.31. Let f ∈ C{x1, . . . , xn}[t] be an irreducible monic polynomial of de-
gree d. Then the polynomial f0(t) = f(0, . . . , 0, t) ∈ C[t] has a root of multiplicity
d.

Proof. Let c ∈ C be a root of f0(t). If the multiplicity of c is l < d then the multi-
plicity of the power series f0(t+c) ∈ C{t} is exactly l and therefore f(x1, . . . , xn, t+c)
is divided in C{x1, . . . , xn}[t] by a Weierstrass polynomial of degree l.

Lemma III.32. Let p ∈ C{x}[y] be a monic polynomial of positive degree d in y.
Then there exists a homomorphism φ : C{x}[y] → C{t} such that φ(p) = 0 and
0 �= φ(x) ∈ (t).

Proof. If d = 1 then p(x, y) = y − p1(x) and we can consider the morphism φ
given by φ(x) = t, φ(y) = p1(t). By induction we can assume the theorem true for
monic polynomials of degree < d.
If p is reducible we have done, otherwise, writing p = yd + p1(x)yd−1 + . . . + pd(x),
after the coordinate change x �→ x, y �→ y − p1(x)/d we can assume p1 = 0.
For every i ≥ 2 denote by µ(pi) = αi > 0 the multiplicity of pi (we set αi = +∞ if
pi = 0).
Let j ≥ 2 be a fixed index such that

αj

j
≤ αi

i
for every i. Setting m = αj , we want

to prove that the monic polynomial p(ξj , y) is not irreducible.
In fact p(ξj , y) = yd +

∑
i≥2 hi(ξ)yd−i, where hi(ξ) = gi(ξj).

For every i the multiplicity of hi is jαi ≥ im and then

q(ξ, y) = p(ξj , ξmy)ξ−dm = td +
∑ hi(ξ)

ξmi
yd−i = yd +

∑
ηi(ξ)yd−i

is a well defined element of C{ξ, y}. Since η1 = 0 and ηj(0) �= 0 the polynomial q is not
irreducible and then, by induction there exists a nontrivial morphism ψ : C{ξ}[y]→
C{t} such that ψ(q) = 0, 0 �= ψ(ξ) ∈ (t) and we can take φ(x) = ψ(ξj) and φ(y) =
ψ(ξmy).

Theorem III.33 (Division theorem). Let p ∈ C{z1, . . . , zn, t}, p �= 0, be a Weier-
strass polynomial of degree d ≥ 0 in t. Then for every f ∈ C{z1, . . . , zn, t} there exist
a unique h ∈ C{z1, . . . , zn, t} such that f − hp ∈ C{z1, . . . , zn}[t] is a polynomial of
degree < d in t.

Proof. For the proof we refer to [23], [24], [26], [37], [28], [51].

We note that an equivalent statement for the division theorem is the following:

Corollary III.34. If p ∈ C{z1, . . . , zn, t}, p �= 0, is a Weierstrass polynomial of
degree d ≥ 0 in t, then C{z1, . . . , zn, t}/(p) is a free C{z1, . . . , zn}-module with basis
1, t, . . . , td−1.

Proof. Clear.

Theorem III.35 (Newton-Puiseux). Let f ∈ C{x, y} be a power series of positive
multiplicity. Then there exists a nontrivial local homomorphism φ : C{x, y} → C{t}
such that φ(f) = 0.
Moreover if f is irreducible then ker φ = (f).
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In the above statement nontrivial means that φ(x) �= 0 or φ(y) �= 0.

Proof. After a linear change of coordinates we can assume f(0, y) a non zero
power series of multiplicity d > 0; by Preparation theorem there exists an invertible
power series e such that p = ef is a Weierstrass polynomial of degree d in y.
According to Lemma III.32 there exists a homomorphism φ : C{x}[y] → C{t} such
that φ(p) = 0 and 0 �= φ(x) ∈ (t). Therefore φ(p(0, y)) ∈ (t) and, being p a
Weierstrass polynomial we have φ(y) ∈ (t) and then φ extends to a local morphism
φ : C{x, y} → C{t}.
Assume now f irreducible, up to a possible change of coordinates and multiplication
for an invertible element we may assume that f ∈ C{x}[y] is an irreducible Weier-
strass polynomial of degree d > 0.
Let φ : C{x, y} → C{t} be a nontrivial morphism such that φ(f) = 0, then φ(x) �= 0
(otherwise φ(y)d = φ(f) = 0) and therefore the restricted morphism φ : C{x} → C{t}
is injective.
Let g ∈ ker(φ), by division theorem there exists r ∈ C{x}[y] such that g = hf + r
and then r ∈ ker(φ), R(f, r) ∈ ker(φ) ∩C{x} = 0. This implies that f divides r.

The division theorem allows to extend the definition of the resultant to power series.
In fact if p ∈ C{z1, . . . , zn}[t] is a Weierstrass polynomial in t of degree d, for every
f ∈ C{z1, . . . , zn, t} we can define the resultant R(p, f) ∈ C{z1, . . . , zn} as the
determinant of the morphism of free C{z1, . . . , zn}-module

f :
C{z1, . . . , zn, t}

(p)
→ C{z1, . . . , zn, t}

(p)
induced by the multiplication with f .
It is clear that R(p, f) = R(p, r) whenever f − r ∈ (p).

Lemma III.36. Let p ∈ C{z1, . . . , zn, t} be a Weierstrass polynomial of positive de-
gree in t and V ⊂ C{z1, . . . , zn, t} a C-vector subspace.
Then R(p, f) = 0 for every f ∈ V if and only if there exists a Weierstrass polynomial
q of positive degree such that:

1. q divides p in C{z1, . . . , zn}[t]
2. V ⊂ qC{z1, . . . , zn, t}
Proof. One implication is clear, in fact if p = qr then the multiplication by q

in not injective in C{z1, . . . , zn, t}/(p); therefore R(p, q) = 0 and by Binet’s theorem
R(p, f) = 0 for every f ∈ (q).
For the converse let p = p1p2 . . . ps be the irreducible decomposition of p in the UFD
C{z1, . . . , zn}[t]. If R(p, f) = 0 and r = f − hp ∈ C{z1, . . . , zn}[t] is the rest of the
division then R(p, r) = 0 and by Lemma III.21 there exists a factor pi dividing r and
therefore also dividing f .
In particular, setting Vi = V ∩ (pi), we have V = ∪iVi and therefore V = Vi for at
least one index i and we can take q = pi.

Proof of III.25. We first consider the easy cases n = 1 and p = 0. If p = 0
then, after a possible change of coordinates, we may assume h(0, . . . , 0, t) �= 0 and
therefore we can take φ(zi) = 0 for i = 1, . . . , n− 1 and φ(zn) = t.
If n = 1 the only prime nontrivial ideal is (z1) and therefore the trivial morphism
φ : C{z1} → C ⊂ C{t} satisfies the statement of the theorem.
Assume then n > 1, p �= 0 and fix a nonzero element g ∈ p. After a possible linear
change of coordinates and multiplication by invertible elements we may assume both
h and g Weierstrass polynomials in the variable zn. Denoting

r = p ∩ C{z1, . . . , zn−1}[zn], q = p ∩ C{z1, . . . , zn−1} = r ∩ C{z1, . . . , zn−1},
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according to Theorem III.23, there exists f̂ ∈ r such that R(h, f̂) �∈ q. On the other
hand, by Lemma III.20, R(g, f) ∈ q for every f ∈ p.
By induction on n there exists a morphism ψ̃ : C{z1, . . . , zn−1} → C{x} such that
ψ̃(q) = 0 and ψ̃(R(h, f̂)) �= 0. Denoting by ψ : C{z1, . . . , zn} → C{x, zn} the natural
extension of ψ̃ we have R(ψ(h), ψ(f̂)) �= 0 and R(ψ(g), ψ(f)) = 0 for every f ∈ p.
Applying Lemma III.36 to the Weierstrass polynomial ψ(g) and the vector space
V = ψ(p) we prove the existence of an irreducible factor p of ψ(g) such that ψ(p) ⊂
pC{x, zn}.
In particular p divides ψ(f̂), therefore R(ψ(h), p) �= 0 and ψ(h) �∈ pC{x, zn}.
By Newton-Puiseux’ theorem there exists η : C{x, zn} → C{t} such that η(p) = 0
and η(ψ(h)) �= 0. It is therefore sufficient to take φ as the composition of ψ and
η.

Exercise III.37. Prove that f, g ∈ C{x, y} have a common factor of positive mul-
tiplicity if and only if the C-vector space C{x, y}/(f, g) is infinite dimensional. �

5. Dimension bounds

As an application of Theorem III.25 we give some bounds for the dimension of an
analytic algebra; this bounds will be very useful in deformation and moduli theory.
The first bound (Lemma III.40) is completely standard and the proof is reproduced
here for completeness; the second bound (Theorem III.41, communicated to the au-
thor by H. Flenner) finds application in the “T 1-lifting” approach to deformation
problems.

We need the following two results of commutative algebra.

Lemma III.38. Let (A,m) be a local Noetherian ring and J ⊂ I ⊂ A two ideals. If
J + mI = I then J = I.

Proof. This a special case of Nakayama’s lemma [3], [51].

Lemma III.39. Let (A,m) be a local Noetherian ring and f ∈ m, then dimA/(f) ≥
dimA− 1.
Moreover, if f is nilpotent then dimA/(f) = dimA, while if f is not a zerodivisor
then dimA/(f) = dimA− 1.

Proof. [3].

Lemma III.40. Let R be an analytic algebra with maximal ideal m, then dimR ≤
dimC

m

m2
and equality holds if and only if R is smooth.

Proof. Let n = dimC

m

m2
and f1, . . . , fn ∈ m inducing a basis of

m

m2
. If J =

(f1, . . . , fn) by assumption J + m2 = m and then by Lemma III.38 J = m, R/J = C

and 0 = dimR/J ≥ dimR− n.
According to Lemma III.5 we can write R = C{z1, . . . , zn}/I for some ideal contained
in (z1, . . . , zn)2. Since C{z1, . . . , zn} is an integral domain, according to Lemma III.39
dimR = n if and only if I = 0.

Theorem III.41. Let R = P/I be an analytic algebra, where P = C{z1, . . . , zn},
n > 0 is a fixed integer, and I ⊂ P is a proper ideal.
Denoting by m = (z1, . . . , zn) the maximal ideal of P and by J ⊂ P the ideal

J =
{

f ∈ I

∣∣∣∣ ∂f

∂zi
∈ I, ∀i = 1, . . . , n

}
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we have dimR ≥ n− dimC

I

J + mI
.

Proof. (taken from [14]) We first introduce the curvilinear obstruction map

γI : MorAn(P, C{t})→ HomC

(
I

J + mI
, C

)
.

Given φ : P → C{t}, if φ(I) = 0 we define γI(φ) = 0; if φ(I) �= 0 and s is the biggest
integer such that φ(I) ⊂ (ts) we define, for every f ∈ I, γI(φ)f as the coefficient of
ts in the power series expansion of φ(f).
It is clear that γI(φ)(mI) = 0, while if φ(I) ⊂ (ts) and f ∈ J we have φ(f) =
f(φ(z1), . . . , φ(zn)),

dφ(f)
dt

=
n∑

i=1

∂f

∂zi
(φ(z1), . . . , φ(zn))

dφ(zi)
dt

∈ (ts)

and therefore φ(f) ∈ (ts+1) (this is the point where the characteristic of the field
plays an essential role).
The ideal I is finitely generated, say I = (f1, . . . , fd), according to Nakayama’s lemma
we can assume f1, . . . , fd a basis of I/mI.
By repeated application of Corollary III.26 (and possibly reordering the fi’s) we can
assume that there exists an h ≤ d such that the following holds:

1. fi /∈
√

(f1, . . . , fi−1) for i ≤ h;
2. for every i ≤ h there exists a morphism of analytic algebras φi : P → C{t}

such that φi(fi) �= 0, φi(fj) = 0 if j < i and the multiplicity of φi(fj)) is bigger
than or equal to the multiplicity of φi(fi)) for every j > i.

3. I ⊂
√

(f1, . . . , fh).

Condition 3) implies that dimR = dimP/(f1, . . . , fh) ≥ n− h, hence it is enough to

prove that γI(φ1), . . . , γI(φh) are linearly independent in HomC

(
I

J + mI
, C

)
and

this follows immediately from the fact that the matrix aij = γI(φi)fj , i, j = 1, . . . , h,
has rank h, being triangular with nonzero elements on the diagonal.

Exercise III.42. In the notation of Theorem III.41 prove that I2 ⊂ J . Prove
moreover that I = J + mI if and only if I = 0. �

Exercise III.43. Let I ⊂ C{x, y} be the ideal generated by the polynomial f =
x5 + y5 + x3y3 and by its partial derivatives fx = 5x4 + 3x2y3, fy = 5y4 + 3x3y2.
Prove that J is not contained in mI, compute the dimension of the analytic algebra

C{x, y}/I and of the vector spaces
I

J + mI
,

I

mI
. �

Exercise III.44. (easy, but for experts) In the notation of III.41, if I ⊂ m2 then

HomC

(
I

J + mI
, C

)
= Ext1R(ΩR, C).

(ΩR is the R-module of separated differentials) �

Exercise III.45. In the notation of Theorem III.41, prove that for every short exact
sequence 0 → E → F → G → 0 of R-modules of finite length (i.e. annihilated by
some power of the maximal ideal) it is defined a map

ob : DerC(R, G)→ HomR

(
I

J
, E

)
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with the property that ob(φ) = 0 if and only if φ lifts to a derivation R→ F .

Moreover, if mRE = 0 then HomR

(
I

J
, E

)
= HomC

(
I

J + mI
, E

)
. �

Remark III.46. (T 1-lifting for prorepresentable functors.)
For every morphism of analytic algebras f : R → A and every A-module of finite
length M there exists a bijection between DerC(R, M) and the liftings of f to mor-
phisms R→ A⊕M .

In the notation of Theorem III.41, if I ⊂ m2, then HomC

(
I

J + mI
, C

)
is the sub-

space of HomC

(
I

mI
, C

)
of obstructions (see [13, Section 5]) of the functor hR arising

from all the small extensions of the form 0 → C → A ⊕M
(Id,p)−→A ⊕ N → 0, where

p : M → N is a morphism of A-modules and A⊕M → A, A⊕N → A are the trivial
extensions.

6. Historical survey, III

According to [24], the preparation theorem was proved by Weierstrass in 1860, while
division theorem was proved by Stickelberger in 1887.
The factoriality of C{z1, . . . , zn} was proved by E. Lasker in a, long time ignored,
paper published in 1905. The same result was rediscovered by W. Rückert (a student
of W. Krull) together the Noetherianity in 1931. In the same paper of Rückert it is
implicitly contained the Nullstellensatz. The ideas of Rückert’s proof are essentially
the same used in the proof given in [28]. The proof given here is different.

All the algebraic results of this chapter that make sense also for the ring of formal
power series C[[z1, . . . , zn]] and their quotients, remain true. In many cases, especially
in deformation theory, we seek for solutions of systems of analytic equations but we
are able to solve these equation only formally; in this situation a great help comes
from the following theorem, proved by M. Artin in 1968.

Theorem III.47. Consider two arbitrary morphisms of analytic algebras f : S → R,
g : S → C{z1, . . . , zn} and a positive integer s > 0. The inclusion C{z1, . . . , zn} ⊂
C[[z1, . . . , zn]] and the projection C{z1, . . . , zn} →

C{z1, . . . , zn}
(z1, . . . , zn)s

give structures of

S-algebras also on C[[z1, . . . , zn]] and
C{z1, . . . , zn}
(z1, . . . , zn)s

.

Assume it is given a morphism of analytic S-algebras

φ : R→ C{z1, . . . , zn}
(z1, . . . , zn)s

=
C[[z1, . . . , zn]]
(z1, . . . , zn)s

.

If φ lifts to a S-algebra morphism R→ C[[z1, . . . , zn]] then φ lifts also to a S-algebra
morphism R→ C{z1, . . . , zn}.
Beware. Theorem III.47 does not imply that every lifting R → C[[z1, . . . , zn]] is

“convergent”.

Proof. This is an equivalent statement of the main theorem of [1]. We leave as
as an exercise to the reader to proof of the equivalence of the two statements.

Exercise III.48. Use Theorem III.47 to prove:
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1. Every irreducible convergent power series f ∈ C{z1, . . . , zn} is also irreducible
in C[[z1, . . . , zn]].

2. C{z1, . . . , zn} is integrally closed in C[[z1, . . . , zn]].
�

Remark III.49. It is possible to give also an elementary proof of item 2 of Exer-
cise III.48 (e.g. [51]), while I don’t know any proof of item 1 which does not involve
Artin’s theorem.
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CHAPTER IV

Infinitesimal deformations of complex manifolds

In this chapter we pass from the classical language of deformation theory to the for-
malism of differential graded objects. After a brief introduction of dg-vector spaces
and dg-algebras, we associate to every deformation X0 ↪→ {Xt}t∈T → (T, 0) its alge-
braic data (Definition IV.27), which is a pair of morphisms of sheaves of dg-algebras
on X0. This algebraic data encodes the Kodaira-Spencer map and also all the “Tay-
lor coefficients” of t �→ Xt.
We introduce the notion of infinitesimal deformation as an infinitesimal variation of
integrable complex structures; this definition will be more useful for our purposes.
The infinitesimal Newlander-Nirenberg theorem, i.e. the equivalence of this definition
with the more standard definition involving flatness, although not difficult to prove,
would require a considerable amount of preliminaries in commutative and homologi-
cal algebra and it is not given in this notes.
In Section 7 we state without proof the Kuranishi’s theorem of existence of semiuni-
versal deformations of compact complex manifolds. In order to keep this notes short
and selfcontained, we avoid the use of complex analytic spaces and we state only the
”infinitesimal” version of Kuranishi’s theorem. This is not a great gap for us since we
are mainly interested in infinitesimal deformations. The interested reader can find
sufficient material to filling this gap in the papers [59], [60] and references therein.

From now on we assume that the reader is familiar with the notion of sheaf, sheaf
of algebras, ideal and quotient sheaves, morphisms of sheaves.
If F is a sheaf on a topological space Y we denote by Fy, y ∈ Y , the stalk at the
point y. If G is another sheaf on Y we denote by Hom(F ,G) the sheaf of morphisms
from F to G and by Hom(F ,G) = Γ(Y,Hom(F ,G)).

For every complex manifold X we denote by Ap,q
X the sheaf of differential forms of

type (p, q) and A∗,∗
X = ⊕p,qAp,q

X . The sheaf of holomorphic functions on X is denoted
by OX ; Ω∗

X (resp.: Ω∗
X) is the sheaf of holomorphic (resp.: antiholomorphic) differ-

ential forms. By definition Ω∗
X = ker(∂ : A∗,0 → A∗,1), Ω∗

X = ker(∂ : A0,∗ → A1,∗);
note that φ ∈ Ω∗

X if and only if φ ∈ Ω∗
X .

If E → X is a holomorphic vector bundle we denote by OX(E) the sheaf of holomor-
phic sections of E.

1. Differential graded vector spaces

This section is purely algebraic and every vector space is considered over a fixed
field K ; unless otherwise specified, by the symbol ⊗ we mean the tensor product ⊗K

over the field K .

Marco Manetti: Lectures on deformations of complex manifolds
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Notation IV.1. We denote by G the category of Z-graded K -vector space. The
objects of G are the K -vector spaces V endowed with a Z-graded direct sum decom-
position V = ⊕i∈ZVi. The elements of Vi are called homogeneous of degree i. The
morphisms in G are the degree-preserving linear maps.

If V = ⊕n∈ZVn ∈ G we write deg(a;V ) = i ∈ Z if a ∈ Vi; if there is no possibility
of confusion about V we simply denote a = deg(a;V ).

Given two graded vector spaces V, W ∈ G we denote by Homn
K

(V, W ) the vector
space of K -linear maps f : V →W such that f(Vi) ⊂Wi+n for every i ∈ Z. Observe
that Hom0

K
(V, W ) = HomG(V, W ) is the space of morphisms in the category G.

The tensor product, ⊗ : G ×G → G, and the graded Hom, Hom∗ : G ×G → G,
are defined in the following way: given V, W ∈ G we set

V ⊗W =
⊕
i∈Z

(V ⊗W )i, where (V ⊗W )i =
⊕
j∈Z

Vj ⊗Wi−j ,

Hom∗(V, W ) =
⊕
n

Homn
K (V, W ).

We denote by

〈, 〉 : Hom∗(V, W )× V →W, 〈f, v〉 = f(v)

the natural pairing.

Definition IV.2. If V, W ∈ G, the twisting map T : V ⊗W →W ⊗V is the linear
map defined by the rule T (v ⊗ w) = (−1)v ww ⊗ v, for every pair of homogeneous
elements v ∈ V , w ∈W .

Unless otherwise specified we shall use the Koszul signs convention. This means
that we choose as natural isomorphism between V ⊗W and W ⊗V the twisting map
T and we make every commutation rule compatible with T . More informally, to “get
the signs right”, whenever an “object of degree d passes on the other side of an object
of degree h, a sign (−1)dh must be inserted”.
As an example, the natural map 〈, 〉 : V × Hom∗(V, W ) → W must be defined as
〈v, f〉 = (−1)f vf(v) for homogeneous f, v. Similarly, if f, g ∈ Hom∗(V, W ), their
tensor product f ⊗ g ∈ Hom∗(V ⊗ V, W ⊗W ) must be defined on bihomogeneous
tensors as (f ⊗ g)(u⊗ v) = (−1)g uf(u)⊗ g(v).

Notation IV.3. We denote by DG the category of Z-graded differential K -vector
spaces (also called complexes of vector spaces). The objects of DG are the pairs
(V, d) where V = ⊕Vi is an object of G and d : V → V is a linear map, called
differential such that d(Vi) ⊂ Vi+1 and d2 = d ◦ d = 0. The morphisms in DG are
the degree-preserving linear maps commuting with the differentials.

For simplicity we will often consider G as the full subcategory of DG whose objects
are the complexes (V, 0) with trivial differential.
If (V, d), (W, δ) ∈ DG then also (V ⊗W, d⊗Id+Id⊗δ) ∈ DG; according to Koszul

signs convention, since δ ∈ Hom1
K

(W, W ), we have (Id⊗ δ)(v ⊗w) = (−1)vv ⊗ δ(w).
There exists also a natural differential ρ on Hom∗(V, W ) given by the formula

δ〈f, v〉 = 〈ρf, v〉+ (−1)f 〈f, dv〉.
Given (V, d) in DG we denote as usual by Z(V ) = ker d the space of cycles, by

B(V ) = d(V ) the space of boundaries and by H(V ) = Z(V )/B(V ) the homology of
V . Note that Z, B and H are all functors from DG to G.
A morphism in DG is called a quasiisomorphism if it induces an isomorphism in



1. DIFFERENTIAL GRADED VECTOR SPACES 47

homology.
A differential graded vector space (V, d) is called acyclic if H(V ) = 0.

Definition IV.4. Two morphisms f, g ∈ Homn
K

(V, W ) are said to be homotopic if
their difference f − g is a boundary in the complex Hom∗(V, W ).

Exercise IV.5. Let V, W be differential graded vector spaces, then:
1. HomDG(V, W ) = Z0(Hom∗(V, W )).
2. If f ∈ B0(Hom∗(V, W )) ⊂ HomDG(V, W ) then the induced morphism f : H(V )→

H(W ) is trivial.
3. If f, g ∈ HomDG(V, W ) are homotopic then they induce the same morphism

in homology.
4. V is acyclic if and only if the identity Id : V → V is homotopic to 0. (Hint: if

C ⊂ V is a complement of Z(V ), i.e. V = Z(V )⊕ C, then V is acyclic if and
only if d : Ci → Z(V )i+1 is an isomorphism for every i.)

�

The fiber product of two morphisms B
f−→D and C

h−→D in the category DG is
defined as the complex

C ×D B =
⊕
n

(C ×D B)n, (C ×D B)n = {(c, b) ∈ Cn ×Bn |h(c) = f(b)}
with differential d(c, b) = (dc, db).

A commutative diagram in DG

A ��

g

��

B

f
��

C
h �� D

is called cartesian if the induced morphism A→ C ×D B is an isomorphism; it is an
easy exercise in homological algebra to prove that if f is a surjective (resp.: injective)
quasiisomorphism, then g is a surjective (resp.: injective) quasiisomorphism. (Hint:
if f is a surjective quasiisomorphism then ker f = ker g is acyclic.)

For every integer n ∈ Z let’s choose a formal symbol 1[n] of degree −n and denote
by K [n] the graded vector space generated by 1[n]. In other terms, the homogeneous
components of K [n] ∈ G ⊂ DG are

K [n]i =
{

K if i + n = 0
0 otherwise

For every pair of integers n, m ∈ Z there exists a canonical linear isomorphism
Sm

n ∈ Homn−m
K

(K [n], K [m]); it is described by the property Sm
n (1[n]) = 1[m].

Given n ∈ Z, the shift functor [n] : DG→ DG is defined by setting V [n] = K [n]⊗V ,
V ∈ DG, f [n] = IdK [n] ⊗ f , f ∈ MorDG.
More informally, the complex V [n] is the complex V with degrees shifted by n, i.e.
V [n]i = Vi+n, and differential multiplied by (−1)n. The shift functors preserve the
subcategory G and commute with the homology functor H. If v ∈ V we also write
v[n] = 1[n]⊗ v ∈ V [n].

Exercise IV.6. There exist natural isomorphisms

Homn
K (V, W ) = HomG(V [−n], W ) = HomG(V, W [n]).

�
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Example IV.7. Among the interesting objects in DG there are the acyclic com-
plexes Ω[n] = K [n] ⊗ Ω, where Ω = (Ω0 ⊕ Ω1, d), Ω0 = K , Ω1 = K [−1] and
d : Ω0 → Ω1 is the canonical linear isomorphism d(1[0]) = 1[−1]. The projection
p : Ω→ Ω0 = K and the inclusion Ω1 → Ω are morphisms in DG.

Exercise IV.8. Let V, W be differential graded vector spaces, then:
1. In the notation of Example IV.7, two morphisms of complexes f, g : V → W

are homotopic if and only if there exists h ∈ HomDG(V, Ω ⊗ W ) such that
f − g = (p⊗ Id|W ) ◦ h.

2. If f, g : V → W are homotopic then f ⊗ h is homotopic to g ⊗ h for every
h : V ′ →W ′.

3. (Künneth) If V is acyclic then V ⊗ U is acyclic for every U ∈ DG.
�

2. Review of terminology about algebras

Let R be a commutative ring, by a nonassociative (= not necessarily associative)
R-algebra we mean a R-module M endowed with a R-bilinear map M ×M →M .
The nonassociative algebra M is called unitary if there exist a “unity” 1 ∈ M such
that 1m = m1 = m for every m ∈M .
A left ideal (resp.: right ideal) of M is a submodule I ⊂M such that MI ⊂ I (resp.:
IM ⊂ I). A submodule is called an ideal if it is both a left and right ideal.
A homomorphism of R-modules d : M →M is called a derivation if satisfies the Leib-
nitz rule d(ab) = d(a)b+ad(b). A derivation d is called a differential if d2 = d◦d = 0.
A R-algebra is associative if (ab)c = a(bc) for every a, b, c ∈ M . Unless otherwise
specified, we reserve the simple term algebra only to associative algebra (almost all
the algebras considered in these notes are either associative or Lie).
If M is unitary, a left inverse of m ∈ M is an element a ∈ M such that am = 1. A
right inverse of m is an element b ∈M such that mb = 1.
If M is unitary and associative, an element m is called invertible if has left and
right inverses. It is easy to see that if m is invertible then every left inverse of m is
equal to every right inverse, in particular there exists a unique m−1 ∈ M such that
mm−1 = m−1m = 1.

Exercise IV.9. Let g be a Riemannian metric on an open connected subset U ⊂ Rn

and let φ : U → R be a differentiable function (called potential).
Denote by R = C∞(U, R) and by M the (free of rank n) R-module of vector fields
on U . If x1, . . . , xn is a system of linear coordinates on Rn denote by:

1. ∂i =
∂

∂xi
∈M , φijk = ∂i∂j∂kφ ∈ R.

2. gij = g(∂i, ∂j) ∈ R and gij the coefficients of the inverse matrix of gij .

3. ∂i ∗ ∂j =
∑
k,l

φijlg
lk∂k

Prove that the R-linear extension M ×M →M of the product ∗ is independent from
the choice of the linear coordinates and write down the (differential) equation that
φ must satisfy in order to have the product ∗ associative. This equation is called
WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equation and it is very important in
mathematics since 1990. �
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3. dg-algebras and dg-modules

Definition IV.10. A graded (associative, Z-commutative) algebra is a graded vec-
tor space A = ⊕Ai ∈ G endowed with a product Ai × Aj → Ai+j satisfying the
properties:

1. a(bc) = (ab)c.
2. a(b + c) = ab + ac, (a + b)c = ac + bc.
3. (Koszul sign convention) ab = (−1)a bba for a, b homogeneous.

The algebra A is unitary if there exists 1 ∈ A0 such that 1a = a1 = a for every a ∈ A.

Let A be a graded algebra, then A0 is a commutative K -algebra in the usual sense;
conversely every commutative K -algebra can be considered as a graded algebra con-
centrated in degree 0. If I ⊂ A is a homogeneous left (resp.: right) ideal then I is
also a right (resp.: left) ideal and the quotient A/I has a natural structure of graded
algebra.

Example IV.11. The exterior algebra A =
∧∗ V of a K -vector space V , endowed

with wedge product, is a graded algebra with Ai =
∧i V .

Example IV.12. (Polynomial algebras.) Given a set {xi}, i ∈ I, of homogeneous
indeterminates of integral degree xi ∈ Z we can consider the graded algebra K [{xi}].
As a K -vector space K [{xi}] is generated by monomials in the indeterminates xi

subjected to the relations xixj = (−1)xi xjxjxi.
In some cases, in order to avoid confusion about terminology, for a monomial xα1

i1
. . . xαn

in
it is defined:
• The internal degree

∑
h xihαh.

• The external degree
∑

h αh.
In a similar way it is defined A[{xi}] for every graded algebra A.

Exercise IV.13. Let A be a graded algebra: if every a �= 0 is invertible then A = A0

and therefore A is a field.
Give an example of graded algebra where every homogeneous a �= 0 is invertible but
A �= A0. �
Definition IV.14. A dg-algebra (differential graded algebra) is the data of a graded

algebra A and a K -linear map s : A→ A, called differential, with the properties:
1. s(An) ⊂ An+1, s2 = 0.
2. (graded Leibnitz rule) s(ab) = s(a)b + (−1)aas(b).

A morphism of dg-algebras is a morphism of graded algebras commuting with differ-
entials; the category of dg-algebras is denoted by DGA.

Example IV.15. Let U be an open subset of a complex variety and denote by
Ai = ⊕p+q=iΓ(U,Ap,q

X ). Then Γ(U,A∗,∗
X ) = ⊕Ai admits infinitely many structures of

differential graded algebras where the differential of each one of is a linear combination
a∂ + b∂, a, b ∈ C.

Exercise IV.16. Let (A, s) be a unitary dg-algebra; prove:
1. 1 ∈ Z(A).
2. Z(A) is a graded subalgebra of A and B(A) is a homogeneous ideal of Z(A).

In particular 1 ∈ B(A) if and only if H(A) = 0.
�

A differential ideal of a dg-algebra (A, s) is a homogeneous ideal I of A such that
s(I) ⊂ I; there exists an obvious bijection between differential ideals and kernels of
morphisms of dg-algebras.
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On a polynomial algebra K [{xi}] a differential s is uniquely determined by the
values s(xi).

Example IV.17. Let t, dt be indeterminates of degrees t = 0, dt = 1; on the poly-
nomial algebra K [t, dt] = K [t] ⊕ K [t]dt there exists an obvious differential d such
that d(t) = dt, d(dt) = 0. Since K has characteristic 0, we have H(K [t, dt]) = K .
More generally if (A, s) is a dg-algebra then A[t, dt] is a dg-algebra with differential
s(a⊗ p(t)) = s(a)⊗ p(t) + (−1)aa⊗ p′(t)dt, s(a⊗ q(t)dt) = s(a)⊗ q(t)dt.

Definition IV.18. A morphism of dg-algebras B → A is called a quasiisomorphism
if the induced morphism H(B)→ H(A) is an isomorphism.

Given a morphism of dg-algebras B → A the space Dern
B(A, A) of B-derivations of

degree n is by definition

Dern
B(A, A) = {φ ∈ Homn

K (A, A) |φ(ab)=φ(a)b + (−1)naaφ(b), φ(B)=0}.
We also consider the graded vector space

Der∗B(A, A) =
⊕
n∈Z

Dern
B(A, A) ∈ G.

There exist a natural differential d and a natural bracket [−,−] on Der∗B(A, A)
defined as

d : Dern
B(A, A)→ Dern+1

B (A, A), dφ = dAφ− (−1)nφdA

and

[f, g] = fg − (−1)f ggf.

Exercise IV.19. Verify that, if f ∈ Derp
B(A, A) and g ∈ Derq

B(A, A) then [f, g] ∈
Derp+q

B (A, A) and d[f, g] = [df, g] + (−1)p[f, dg]. �
Let (A, s) be a fixed dg-algebra, by an A-dg-module we mean a differential graded

vector space (M, s) together two associative distributive multiplication maps A ×
M →M , M ×A→M with the properties:

1. AiMj ⊂Mi+j , MiAj ⊂Mi+j .
2. (Koszul) am = (−1)a mma, for homogeneous a ∈ A, m ∈M .
3. (Leibnitz) s(am) = s(a)m + (−1)aas(m).

If A = A0 we recover the usual notion of complex of A-modules.

Example IV.20. For every morphism of dg-algebras B → A the space Der∗B(A, A) =
⊕pDerp

B(A, A) has a natural structure of A-dg-module, with left multiplication (af)(b) =
a(f(b)).

If M is an A-dg-module then M [n] = K [n]⊗K M has a natural structure of A-dg-
module with multiplication maps

(e⊗m)a = e⊗ma, a(e⊗m) = (−1)nae⊗ am, e ∈ K [n], m ∈M, a ∈ A.

The tensor product N ⊗A M is defined as the quotient of N ⊗K M by the graded
submodules generated by all the elements na⊗m− n⊗ am.
Given two A-dg-modules (M, dM ), (N, dN ) we denote by

Homn
A(M, N) = {f ∈ Homn

K (M, N) | f(ma) = f(m)a, m ∈M, a ∈ A}

Hom∗
A(M, N) =

⊕
n∈Z

Homn
A(M, N).

The graded vector space Hom∗
A(M, N) has a natural structure of A-dg-module with

left multiplication (af)(m) = af(m) and differential

d : Homn
A(M, N)→ Homn+1

A (M, N), df = [d, f ] = dN ◦ f − (−1)nf ◦ dM .
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Note that f ∈ Hom0
A(M, N) is a morphism of A-dg-modules if and only if df = 0. A

homotopy between two morphism of dg-modules f, g : M → N is a h ∈ Hom−1
A (M, N)

such that f − g = dh = dNh+hdM . Homotopically equivalent morphisms induce the
same morphism in homology.
Morphisms of A-dg-modules f : L → M , h : N → P induce, by composition, mor-

phisms f∗ : Hom∗
A(M, N)→ Hom∗

A(L, N), h∗ : Hom∗
A(M, N)→ Hom∗

A(M, P );

Lemma IV.21. In the above notation if f is homotopic to g and h is homotopic to
l then f∗ is homotopic to g∗ and l∗ is homotopic to h∗.

Proof. Let p ∈ Hom−1
A (L, M) be a homotopy between f and g, It is a straight-

forward verification to see that the composition with p is a homotopy between f∗

and g∗. Similarly we prove that h∗ is homotopic to l∗.

Lemma IV.22. (Base change) Let A → B be a morphism of unitary dg-algebras,
M an A-dg-module, N a B-dg-modules. Then there exists a natural isomorphism of
B-dg-modules

Hom∗
A(M, N) � Hom∗

B(M ⊗A B, N).

Proof. Consider the natural maps:

Hom∗
A(M, N)

L �� Hom∗
B(M ⊗A B, N)

R
		 ,

Lf(m⊗ b) = f(m)b, Rg(m) = g(m⊗ 1).

We left as exercise the easy verification that L, R are isomorphisms of B-dg-modules
and R = L−1.

Given a morphism of dg-algebras B → A and an A-dg-module M we set:

Dern
B(A, M) = {φ ∈ Homn

K (A, M) |φ(ab)=φ(a)b + (−1)naaφ(b), φ(B)=0}

Der∗B(A, M) =
⊕
n∈Z

Dern
B(A, M).

As in the case of Hom∗, there exists a structure of A-dg-module on Der∗B(A, M) with
product (aφ)(b) = aφ(b) and differential

d : Dern
B(A, M)→ Dern+1

B (A, M), dφ = [d, φ] = dMφ− (−1)nφdA.

Given φ ∈ Dern
B(A, M) and f ∈ Homm

A (M, N) their composition fφ belongs to
Dern+m

B (A, N).

4. Kodaira-Spencer’s maps in dg-land

In this section, we define on the central fibre of a deformation a sheaf of differential
graded algebras B which contains (well hidden) the “Taylor coefficients” of the vari-
ation of the complex structures given by the deformation (the first derivative being
the Kodaira-Spencer map).

Lemma IV.23. Let U be a differential manifold (not necessarily compact), ∆ ⊂ Cn

a polydisk with coordinates t1, . . . , tn and f(x, t) ∈ C∞(U ×∆, C).
Then there exist f1, . . . , fn, f1, . . . , fn ∈ C∞(U ×∆, C) such that

fi(x, 0) =
∂f

∂ti
(x, 0), fi(x, 0) =

∂f

∂ti
(x, 0) and

f(x, t) = f(x, 0) +
∑

tifi(x, t) +
∑

tifi(x, t).
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Proof. The first 2 equalities follow from the third. Writing tj = uj + ivj ,
tj = uj − ivj , with uj , vj real coordinates on Cn = R2n we have

f(x, u, v) = f(x, 0, 0) +
∫ 1

0

d

ds
f(x, su, sv)ds =

= f(x, 0, 0) +
∑

j

uj

∫ 1

0

d

duj
f(x, su, sv)ds +

∑
j

vj

∫ 1

0

d

dvj
f(x, su, sv)ds

Rearranging in the coordinates tj , tj we get the proof.

Let X be a fixed complex manifold; denote by Der∗
Ω

∗
X

(A0,∗
X ,A0,∗

X ) ⊂ Hom(A0,∗
X ,A0,∗

X )

the sheaf of Ω∗
X -derivations of the sheaf of graded algebras A0,∗

X ; we have the following

Proposition IV.24. In the notation above there exists a natural isomorphism of
sheaves

θ : A0,∗
X (TX) ∼−→Der∗

Ω
∗(A0,∗

X ,A0,∗
X ).

In local holomorphic coordinates z1, . . . , zm,

θ : A0,p
X (TX)→ Derp

Ω
∗
X

(A0,∗
X ,A0,∗

X ) ⊂ Derp
C
(A0,∗

X ,A0,∗
X )

is given by θ

(
φ

∂

∂zi

)
(fdzI) = φ ∧ ∂f

∂zi
dzI .

The Dolbeault differential in A0,∗
X (TX) corresponds, via the isomorphism θ, to the

restriction to Der∗
Ω

∗
X

(A0,∗
X ,A0,∗

X ) of the adjoint operator

[∂,−] : Der∗C(A0,∗
X ,A0,∗

X )→ Der∗+1
C

(A0,∗
X ,A0,∗

X ).

Proof. The morphism θ is injective and well defined. Let U ⊂ X be an open
polydisk with coordinates z1, . . . , zm. Take ξ ∈ Γ(U,Derp

Ω
∗(A0,∗

X ,A0,∗
X )) and denote

φi = ξ(zi) ∈ Γ(U,A0,p
X ). We want to prove that ξ = θ

(∑
i φi

∂

∂zi

)
.

Since, over U , A0,∗
X is generated by A0,0

X and Ω∗
X , it is sufficient to prove that for

every open subset V ⊂ U , every point x ∈ V and every C∞-function f ∈ Γ(V,A0,0
X )

the equality ξ(f)(x) =
∑

i φi
∂f

∂zi
(x) holds.

If zi(x) = xi ∈ C, then by Lemma IV.23 we can write

f(z1, . . . , zm) = f(x1, . . . , xm) +
m∑

i=1

(zi − xi)fi(z1, . . . , zm) +
m∑

i=1

(zi − xi)fi(z1, . . . , zm)

for suitable C∞ functions fi, fi; therefore

ξ(f)(x) =
m∑

i=1

ξ(zi − xi)fi(x1, . . . , xm) =
m∑

i=1

φi
∂f

∂zi
(x).

In particular, for ξ, η ∈ Γ(U,Derp

Ω
∗
X

(A0,∗
X ,A0,∗

X )), we have ξ = η if and only if ξ(zi) =

η(zi) for i = 1, . . . , m. Since ∂ Ω∗
X ⊂ Ω∗

X , the adjoint operator [∂,−] preserves
Derp

Ω
∗
X

(A0,∗
X ,A0,∗

X ), moreover

θ

(
∂φ

∂

∂zi

)
zj = (∂φ)δij = ∂(φδij)− (−1)φ

(
φ

∂

∂zi

)
(∂zj) =

[
∂, θ

(
φ

∂

∂zi

)]
zj ,

and then θ∂ = [∂,−]θ.
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According to Proposition IV.24, the standard bracket on Der∗
Ω

∗
X

(A0,∗
X ,A0,∗

X ) induces

a bracket on the sheaf A0,∗
X (TX) given in local coordinates by[

f
∂

∂zi
dzI , g

∂

∂zj
dzJ

]
=

(
f

∂g

∂zi

∂

∂zj
− g

∂f

∂zj

∂

∂zi

)
dzI ∧ dzJ .

Note that for f, g ∈ Γ(U,A0,0
X (TX)), [f, g] is the usual bracket on vector fields on a

differentiable manifolds.

Let B ⊂ Cn be an open subset, 0 ∈ B, and let M0
i−→M

f−→(B, 0) be a deformation
of a compact complex manifold M0; let t1, . . . , tn be a set of holomorphic coordinates
on B.
It is not restrictive to assume M0 ⊂M and i the inclusion map.

Definition IV.25. In the notation above, denote by IM ⊂ A∗,∗
M the graded ideal

sheaf generated by ti, dti, dti. Denote by B∗,∗
M the quotient sheaf A∗,∗

M /IM .1

If z1, . . . , zm, t1, . . . , tn are admissible (Defn. I.29) local holomorphic coordinates
on an admissible chart W ⊂ M , W � (W ∩M0) × ∆, 0 ∈ ∆ ⊂ B polydisk, then
every φ ∈ Γ(W,B∗,∗

M ) has a representative in Γ(W,A∗,∗
M ) of the form

φ0(z) +
∑

i

tiφi(z, t), φ0(z) ∈ Γ(W ∩M0,A∗,∗
M0

), φi ∈ Γ(W,A∗,∗
M ).

By a recursive use of Lemma IV.23 we have that, for every s > 0, φ is represented by∑
|I|<s

tIφI(z) +
∑
|I|=s

tIφI(z, t).

The ideal sheaf IM is preserved by the differential operators d, ∂, ∂ and therefore
we have the corresponding induced operators on the sheaf of graded algebras B∗,∗

M .
Denoting by B0,∗

M ⊂ B∗,∗
M the image of A0,∗

M we have that B0,∗
M is a sheaf of dg-algebras

with respect to the differential ∂.

Lemma IV.26. In the notation above, let U, V ⊂ M be open subsets; if U ∩M0 =
V ∩M0 then Γ(U,B∗,∗

M ) = Γ(V,B∗,∗
M ) and therefore B∗,∗

M is a sheaf of dg-algebras over
M0.

Proof. It is not restrictive to assume V ⊂ U , then U = V ∪(U−M0) and by the
sheaf properties it is sufficient to show that Γ(U −M0,B∗,∗

M ) = Γ(V −M0,B∗,∗
M ) = 0.

More generally if U ⊂ M is open and U ∩M0 = ∅ then Γ(U,B∗,∗
M ) = 0; in fact there

exists an open covering U = ∪Ui such that ti is invertible in Ui.
If W ⊂M0 is open we define Γ(W,B∗,∗

M ) = Γ(U,B∗,∗
M ), where U is any open subset of

M such that U ∩M0 = W .

The pull-back i∗ : A∗,∗
M → A∗,∗

M0
factors to a surjective morphism i∗ : B∗,∗

M → A∗,∗
M0

of
sheaves of differential graded algebras over M0.
Note also that the image in B∗,∗

M of the sheaf of antiholomorphic differential forms
Ω∗

M is naturally isomorphic to the sheaf Ω∗
M0

. In fact if z1, . . . , zm, t1, . . . , tn are local
admissible coordinates at a point p ∈M0 and ψ ∈ Ωq

M then

ψ ≡
∑

ψj1,... ,jq(z)dzj1 ∧ . . . ∧ dzjq (mod ti, dti), ∂ψj1,... ,jq = 0.

1It is also possible to define B as the quotient of A by the ideal generated by ti, dti, dti and
the C∞ functions on B with vanishing Taylor series at 0: the results of this chapter will remain
essentially unchanged
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Therefore to every deformation M0
i−→M

f−→(B, 0) we can associate an injective mor-
phism of sheaves of dg-algebras on M0:

Ω∗
M0

f̂−→B0,∗
M ⊂ B∗,∗

M .

Definition IV.27. The algebraic data of a deformation M0
i−→M

f−→(B, 0) is the
pair of morphisms of sheaves of dg-algebras on M0:

Ω∗
M0

f̂−→B∗,∗
M

i∗−→A∗,∗
M0

.

We note that f̂ injective, i∗ surjective and i∗f̂ the natural inclusion. Moreover f̂
and i∗ commute with both differentials ∂, ∂.

If M0
j−→N

g−→(B, 0) is an isomorphic deformation then there exists an isomorphism
of sheaves of dg-algebras B∗,∗

M → B∗,∗
N which makes commutative the diagram

Ω∗
M0

f̂ ��

ĝ

��

B∗,∗
M

i∗

��

��
��

��
��

B∗,∗
N j∗

�� A∗,∗
M0

Similarly if (C, 0) → (B, 0) is a germ of holomorphic map, then the pull-back of
differential forms induces a commutative diagram

Ω∗
M0

��

��

B∗,∗
M

������
��

��
��

�

B∗,∗
M×BC

�� A∗,∗
M0

Before going further in the theory, we will show that the Kodaira-Spencer map
of a deformation M0

i−→M
f−→(B, 0) of a compact connected manifold M0 can be

recovered from its algebraic data Ω∗
M0

f̂−→B∗,∗
M

i∗−→A∗,∗
M0

Lemma IV.28. In the notation above, consider A0,∗
M0

as a sheaf of B0,∗
M -modules with

the structure induced by i∗ and denote for every j ≥ 0.

T j
M =

Derj

Ω
∗(B0,∗

M ,A0,∗
M0

)

i∗Derj

Ω
∗(A0,∗

M0
,A0,∗

M0
)
.

Then there exists a natural linear isomorphism

T0,B = ker(Γ(M0, T 0
M )→ Γ(M0, T 1

M ), h �→ ∂Ah− h∂B).

Proof. We consider T0,B as the C-vector space of C-derivations OB,0 → C.
Let h ∈ Γ(M0,Der∗

Ω
∗(B0,∗

M ,A0,∗
M0

)) be such that ∂Ah − h∂B ∈ i∗Der1
Ω

∗(A0,∗
M0

,A0,∗
M0

);
in particular ∂h(ti) = 0 for every i, the function h(ti) is holomorphic and then
constant. Moreover, h(ti) = 0 for every i if and only if h(ker i∗) = 0 if and only if
h ∈ i∗Der0

Ω
∗(A0,∗

M0
,A0,∗

M0
).

This gives a linear injective morphism

ker(Γ(M0, T 0
M )→ Γ(M0, T 1

M ))→ T0,B.

To prove the surjectivity, consider a derivation δ : OB,0 → C and let M0 = ∪Ua,
a ∈ I, be a locally finite covering with every Ua open polydisk with coordinate
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systems za
1 , . . . , za

m : Ua → C. Let t1, . . . , tn be coordinates on B.
Over Ua, every φ ∈ B0,∗

M can be written as φ0(z) +
∑

tiφi(z) +
∑

titj . . . , with
φi ∈ A0,∗

M0
. Setting ha(φ) =

∑
i δ(ti)φi we see immediately that ha is a Ω∗

Ua
-derivation

lifting δ. Taking a partition of unity ρa subordinate to the covering {Ua}, we can
take h =

∑
a ρaha.

Let h ∈ Γ(M0,Der∗
Ω

∗(B0,∗
M ,A0,∗

M0
)) be such that ψ = ∂Ah−h∂B ∈ i∗Der1

Ω
∗(A0,∗

M0
,A0,∗

M0
)

and let δ : OB,0 → C be the corresponding derivation, δ(ti) = h(ti).
According to the isomorphism (Proposition IV.24) Derj

Ω
∗(A0,∗

M0
,A0,∗

M0
) = A0,j

M0
(TM0)

we have ψ ∈ Γ(M0,A0,1(TM0)).
Moreover, being ψ exact in the complexDer∗

Ω
∗(B0,∗

M ,A0,∗
M0

), it is closed inDer0
Ω

∗(A0,∗
M0

,A0,∗
M0

),
ψ is a ∂-closed form of Γ(M0,A0,1(TM0)) and the cohomology class [ψ] ∈ H1(M0, TM0)
is depends only on the class of h in Γ(M0, T 0

M ). It is now easy to prove the following

Proposition IV.29. In the above notation, [ψ] = [∂h− h∂] = KSf (δ).

Proof. (sketch) Let η ∈ Γ(M,A0,0
M (TM )) be a complexified vector field such that

(f∗η)(0) = δ. We may interpret η as a Ω∗
M -derivation of degree 0 η : A0,∗

M → A0,∗
M ;

passing to the quotient we get a Ω∗
M0

-derivation h : B0,∗
M → A0,∗

M0
. The condition

(f∗η)(0) = δ means that h lifts δ and therefore ψ corresponds to the restriction of ∂η
to the fibre M0.

5. Transversely holomorphic trivializations

Definition IV.30. A transversely holomorphic trivialization of a deformation M0
i−→M

f−→(B, 0)
is a diffeomorphism φ : M0 ×∆→ f−1(∆) such that:

1. ∆ ⊂ B is an open neighbourhood of the base point 0 ∈ B
2. φ(x, 0) = i(x) and fφ is the projection on the second factor.
3. For every x ∈M0, φ : {x} ×∆→M is a holomorphic function.

Theorem IV.31. Every deformation of a compact complex manifold admits a trans-
versely holomorphic trivialization.

Proof. (cf. also [10], [78]) Let f : M → B be a deformation of M0; it is not
restrictive to assume B ⊂ Cn a polydisk with coordinates t1, . . . , tn and 0 ∈ B the
base point of the deformation. We identify M0 with the central fibre f−1(0).
After a possible shrinking of B there exist a finite open covering M = ∪Wa, a =
1, . . . , r, and holomorphic projections pa : Wa → Ua = Wa∩M0 such that (pa, f) : Wa →
Ua × B is a biholomorphism for every a and Ua is a local chart with coordinates
za
i : Ua → C, i = 1, . . . , m.

Let ρa : M0 → [0, 1] be a C∞ partition of unity subordinate to the covering {Ua} and
denote Va = ρ−1

a (]0, 1]); we note that {Va} is a covering of M0 and Va ⊂ Ua. After a
possible shrinking of B we may assume p−1

a (Va) closed in M .
For every subset C ⊂ {1, . . . , r} and every x ∈M0 we denote

HC =

 ⋂
a∈C

Wa −
⋃
a �∈C

p−1
a (Va)

×
 ⋂

a∈C

Ua −
⋃
a �∈C

Va

 ⊂M ×M0,

Cx = {a |x ∈ Va }, H =
⋃
C

HC .
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Clearly (x, x) ∈ HCx and then H is an open subset of M ×M0 containing the graph
G of the inclusion M0 →M . Since the projection pr : M ×M0 →M is open and M0

is compact, after a possible shrinking of B we may assume pr(H) = M .
Moreover if (y, x) ∈ H and x ∈ Va then (y, x) ∈ HC for some C containing a and
therefore y ∈Wa.
For every a consider the C∞ function qa : H ∩ (M × Ua)→ Cm,

qa(y, x) =
∑

b

ρb(x)
∂za

∂zb
(x)(zb(pb(y))− zb(x)).

By the properties of H, qa is well defined and separately holomorphic in the variable
y. If (y, x) ∈ H ∩ (M × (Ua ∩ Uc)) then

qc(y, x) =
∂zc

∂za
(x)qa(y, x)

and then

Γ = {(y, x) ∈ H | qa(y, x) = 0 whenever x ∈ Ua}

is a well defined closed subset of H.
If y ∈ Va ⊂M0 and x is sufficiently near to y then x ∈ (

⋂
b∈Cy

Ub−
⋃

b�∈C Vb) and, for
every b ∈ Cy,

zb(y) = zb(x) +
∂zb

∂za
(x)(za(y)− za(x)) + o(‖za(y)− za(x)‖).

Therefore

qa(y, x) = za(y)− za(x) + o(‖za(y)− za(x)‖).

In particular the map x �→ qa(y, x) is a local diffeomorphism at x = y.
Denote K ⊂ H the open subset of points (y, x) such that, if y ∈ p−1

a (Va) then
u �→ qa(y, u) has maximal rank at u = x; note that K contains G.
Let Γ0 be the connected component of Γ∩K that contains G; Γ0 is a C∞-subvariety
of K and the projection pr : Γ0 → M is a local diffeomorphism. Possibly shrinking
B we may assume that pr : Γ0 →M is a diffeomorphism.
By implicit function theorem Γ0 is the graph of a C∞ projection γ : M →M0.
After a possible shrinking of B, the map (γ, f) : M → M0 × B is a diffeomorphism,
take φ = (γ, f)−1.
To prove that, for every x ∈ M0, the map t �→ φ(x, t) is holomorphic we note that
f : φ({x}×B)→ B is bijective and therefore φ(x,−) = f−1pr : {x}×B → φ({x}×B).
The map f−1 : B → φ({x}×B) is holomorphic if and only if φ({x}×B) = γ−1(x) is
a holomorphic subvariety and this is true because for x fixed every map y �→ qa(y, x)
is holomorphic.

Let z1, . . . , zm, t1, . . . , tn be an admissible system of local coordinates at a point
p ∈M0 ⊂M . z1, . . . , zm, t1, . . . , tn is also a system of local coordinates over M0×B.
In these systems, a transversely holomorphic trivialization φ : M0×B →M is written
as

φ(z, t) = (φ1(z, t), . . . , φm(z, t), t1, . . . , tn),

where every φi, being holomorphic in t1, . . . , tn, can be written as

φi(z, t) = zi +
∑
I>0

tIφi,I(z), I = (i1, . . . , in), φi,I ∈ C∞.
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In a neighbourhood of p,

φ∗dzi = dzi +
∑
I>0

tI
m∑

j=1

(
∂φi,I

∂zj
dzj +

∂φi,I

∂zj
dzj

)
, (mod IM0×B),

φ∗dzi = dzi, (mod IM0×B).

Lemma IV.32. Every transversely holomorphic trivialization φ : M0 × B → M in-
duces isomorphisms of sheaves of graded algebras over M0

φ∗ : B∗,∗
M → B∗,∗

M0×B, φ∗ : B0,∗
M → B0,∗

M0×B

making commutative the diagrams

Ω∗
M0

��

��

B∗,∗
M

��φ∗
����

��
��

��
�

B∗,∗
M0×B

�� A∗,∗
M0

Ω∗
M0

��

��

B0,∗
M

��φ∗
����������

B0,∗
M0×B

�� A0,∗
M0

Beware: It is not true in general that, for p > 0, φ∗(Bp,q) ⊂ Bp,q.

Proof. For every open subset U ⊂M , the pull-back

φ∗ : Γ(U,A∗,∗
M )→ Γ(φ−1(U),A∗,∗

M0×B)

is an isomorphism preserving the ideals IM and IM0×B. Since U∩M0 = φ−1(U)∩M0,
the pull-back φ∗ induces to the quotient an isomorphism of sheaves of graded algebras
φ∗ : B∗,∗

M → B∗,∗
M0×B.

From the above formulas follows that φ∗(Bp,k−p
M ) ⊂ ⊕q≤pBq,k−q

M0×B and φ∗ is the identity
on Ω∗

M0
. This shows that φ∗(B0,∗

M ) = B0,∗
M0×B and proves the commutativity of the

diagrams.

The ∂ operator on A∗,∗
M factors to B0,∗

M and therefore induces operators

∂ : B0,∗
M → B0,∗+1

M , ∂φ = φ∗∂(φ∗)−1 : B0,∗
M0×B → B

0,∗+1
M0×B.

If z1, . . . , zm, t1, . . . , tn are admissible local coordinates at p ∈M0, we have

(φ∗)−1dzi = dzi +
m∑

j=1

aijdzj + bijdzj , (mod IM ),

where aij , bij are C∞ functions vanishing on M0 and

(φ∗)−1dzi = dzi, (mod IM ).

Thus we get immediately that ∂φ(dzi) = 0. Let’s now f be a C∞ function in a
neighbourhood of p ∈ U ⊂ M0 × B and let π : A∗,∗

M → A0,∗
M be the projection. By

definition ∂φf is the class in B0,∗
M0×B of

φ∗πd(φ∗)−1f = φ∗π(φ∗)−1df =
m∑

i=1

∂f

∂zi
φ∗π(φ∗)−1dzi +

m∑
i=1

∂f

∂zi
φ∗π(φ∗)−1dzi

and then

∂φf = ∂f +
∑
ij

bij
∂f

∂zi
dzj .

If ψ : M0 × B → M is another transversely holomorphic trivialization and θ =
φ∗(ψ∗)−1 then ∂ψ = θ∂φθ−1.
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6. Infinitesimal deformations

Let M0
i−→M

f−→(B, 0) be a deformation of a compact complex manifold and J ⊂
OB,0 a proper ideal such that

√
I = mB,0; after a possible shrinking of B we can

assume that:
1. B ⊂ Cn is a polydisk with coordinates t1, . . . , tn and J is generated by a finite

number of holomorphic functions on B.
2. f : M → B is a family admitting a transversely holomorphic trivialization

φ : M0 ×B →M .
Denote by (X, 0) the fat point (B, 0, J) and byOX,0 = OB,0/J its associated analytic

algebra. If ms
B,0 ⊂ J then the holomorphic functions tI , I = (i1, . . . , in), |I| < s,

generate OX,0 as a C-vector space.
Denote by IM,J ⊂ A∗,∗

M the graded ideal sheaf generated by IM and J , B∗,∗
M,J =

A∗,∗
M /IM,J = B∗,∗

M /(J), OM,J = OM/(J). The same argument used in Lemma IV.26
shows that B∗,∗

M,J and OM,J are sheaves over M0. In the same manner we define
B∗,∗

M0×B,J

Lemma IV.33. Let U ⊂M0 be an open subset, then there exist isomorphisms

Γ(U,OM0×B,J) = Γ(U,OM0)⊗C OX,0, Γ(U,B∗,∗
M0×B,J) = Γ(U,A∗,∗

M0
)⊗C OX,0.

The same holds for M instead of M0×B provided that U is contained in an admissible
coordinate chart.

Proof. We have seen that every φ ∈ Γ(U,Bp,q
M0×B,J) is represented by a form∑

|I|<s tIφI , with φI ∈ Γ(U,Ap,q
M0

). Writing every tI as a linear combination of the
elements of a fixed basis of OX,0 and rearranging the terms we get the desired result.
The same argument applies to OM0×B,J and, if U is sufficiently small, to B∗,∗

M,J ,
OM,J .

Corollary IV.34. OM,J = ker(∂ : B0,0
M,J → B

0,1
M,J).

Proof. If U ⊂ M0 is a sufficiently small open subset, we have Γ(U,B∗,∗
M,J) =

Γ(U,A∗,∗
M0

)⊗C OX,0 and then

ker
(
∂ : Γ(U,B0,0

M,J)→ Γ(U,B0,1
M,J)

)
=

= ker
(
∂ : Γ(U,A0,0

M0
)⊗OX,0 → Γ(U,A0,1

M0
)⊗OX,0

)
= Γ(U,OM,J).

The transversely holomorphic trivialization φ gives a commutative diagram of mor-
phisms of sheaves of graded algebras

Ω∗
M0
⊗OX,0

��

��

B0,∗
M,J

��φ∗
������������

B0,∗
M0×B,J

�� A0,∗
M0

with φ∗ an isomorphism. The operator ∂φ = φ∗∂(φ∗)−1 is a OX,0-derivation of de-
gree 1 such that ∂

2
φ = 1

2 [∂φ, ∂φ] = 0 and then ηφ = ∂φ − ∂ : B0,∗
M0×B,J → B

0,∗+1
M0×B,J is a

Ω∗
M0
⊗OX,0-derivation.
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According to Lemma IV.33 we have B0,∗
M0×B,J = A0,∗

M0
⊗ OX,0; moreover, if g0 =

1, g1(t), . . . , gr(t) is a basis of OX,0 with gi ∈ mX,0 for i > 0, then we can write ηφ =∑
i>0 gi(t)ηi, with every ηi a Ω∗

M0
-derivation of degree 1 ofA0,∗

M0
. By Proposition IV.24

ηφ ∈ Γ(M0,A0,1(TM0))⊗mX,0.
In local holomorphic coordinates z1, . . . , zm we have ∂φ(dzi) = 0 and

∂φf = ∂f +
∑
i,j,k

gi(t)bi
j,k(z)

∂f

∂zj
dzk

for every C∞ function f . The bi
j,k are C∞ functions on M0.

A different choice of transversely holomorphic trivialization ψ : M0 ×B →M gives
a conjugate operator ∂ψ = θ∂φθ−1, where θ = φ∗(ψ∗)−1.

This discussion leads naturally to the definition of deformations of a compact com-
plex manifolds over a fat points.

Definition IV.35. A deformation of M0 over a fat point (X, 0) is a section

η ∈ Γ(M0,A0,1(TM0))⊗mX,0 = Der1
Ω

∗
M0

(A0,∗
M0

,A0,∗
M0

)⊗mX,0

such that the operator ∂ + η ∈ Der1OX,0
(A0,∗

M0
⊗ OX,0,A0,∗

M0
⊗ OX,0) is a differential,

i.e. [∂ + η, ∂ + η] = 0.
Two deformations η, µ ∈ Γ(M0,A0,1(TM0))⊗mX,0 are isomorphic if and only if there
exists an automorphism of sheaves of graded algebras θ : A0,∗

M0
⊗OX,0 → A0,∗

M0
⊗OX,0

commuting with the projection A0,∗
M0
⊗ OX,0 → A0,∗

M0
and leaving point fixed the

subsheaf Ω∗
M0
⊗OX,0 such that ∂ + µ = θ(∂ + η)θ−1.

According to IV.24 the adjoint operator [∂,−] corresponds to the Dolbeault dif-
ferential in the complex A0,∗(TM0) and therefore (∂ + η)2 = 0 if and only if η ∈
Γ(M0,A0,1(TM0))⊗mX,0 satisfies the Maurer-Cartan equation

∂η +
1
2
[η, η] = 0 ∈ Γ(M0,A0,2(TM0))⊗mX,0.

We denote with both DefM0(X, 0) and DefM0(OX,0) the set of isomorphism classes
of deformations of M0 over (X, 0). By an infinitesimal deformation we mean a de-
formation over a fat point; by a first order deformation we mean a deformation over
a fat point (X, 0) such that mX,0 �= 0 and m2

X,0 = 0.
The Proposition IV.29 allows to extend naturally the definition of the Kodaira-

Spencer map KS: T0,X → H1(M0, TM0) to every infinitesimal deformation over (X, 0).
Consider in fact δ ∈ DerC(OX,0, C) = T0,X , then

h = Id⊗ δ : A0,∗
M0
⊗OX,0 → A0,∗

M0

is a Ω∗
M0

-derivation lifting δ. Since

(∂h− h(∂ + η))(f ⊗ 1) = h(−η(f))

we may define KS(δ) as the cohomology class of the derivation

A0,∗
M0
→ A0,∗+1

M0
, f �→ h(−η(f)),

which corresponds, via the isomorphism of Proposition IV.24, to

(Id⊗ δ)(−η) ∈ Γ(M0,A0,1(TM0)),
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where Id ⊗ δ : Γ(M0,A0,1(TM0)) ⊗ mX,0. According to the Maurer-Cartan equation
∂η = −1

2 [η, η] ∈ Γ(M0,A0,2(TM0))⊗m2
X,0 and then

∂((Id⊗ δ)(−η)) = (Id⊗ δ)(−∂η) = 0.

A morphism of fat points (Y, 0) → (X, 0) is the same of a morphism of local C-
algebras α : OX,0 → OY,0; It is natural to set Id ⊗ α(η) ∈ Γ(M0,A0,1(TM0)) ⊗ mY,0

as the pull-back of the deformation η. It is immediate to see that the Kodaira-
Spencer map of Id ⊗ α(η) is the composition of the Kodaira-Spencer map of η and
the differential α : TY,0 → TX,0.

7. Historical survey, IV

The importance of infinitesimal deformations increased considerably after the proof
(in the period 1965-1975) of several ineffective existence results of semiuniversal de-
formations of manifolds, of maps etc.., over singular bases.
The archetype of these results is the well known theorem of Kuranishi (1965) [45], as-
serting the existence of the semiuniversal deformation of a compact complex manifold
over a base which is an analytic singularity. An essentially equivalent formulation of
Kuranishi theorem is the following

Theorem IV.36. Let M0 be a compact complex manifold with n = h1(M0, TM0),
r = h2(M0, TM0).
Then there exist a polydisk ∆ ⊂ Cn, a section η ∈ Γ(M,A0,1(Tf )), being M = M0×∆
and f : M → ∆ the projection, and q = (q1, . . . , qr) : ∆ → Cr a holomorphic map
such that:

1. q(0) = 0 and
∂qi

∂tj
(0) = 0 for every i, j, being t1, . . . , tn holomorphic coordinates

on ∆.
2. η vanishes on M0 and it is holomorphic in t1, . . . , tn; this means that it is

possible to write

η =
∑
I>0

tIηI , I = (i1, . . . , in), ηI ∈ Γ(M0,A0,1(TM0)).

3. η satisfies the Maurer-Cartan equation to modulus q1, . . . , qs, i.e.

∂η +
1
2
[η, η] ∈

∑
qiΓ(M,A0,2(Tf )).

4. Given a fat point (X, 0) the natural map

η : MorAn(O∆,0/(q1, . . . , qs),OX,0)→ DefM0(X, 0), α �→ α(η)

is surjective for every (X, 0) and bijective whenever OX,0 = C[t]/(t2).

It is now clear that the study of infinitesimal deformations can be used to deduce
the structure of the holomorphic map q and the existence of the semiuniversal defor-
mation over a smooth base. For example we have the following

Corollary IV.37. Let M0 be a compact complex manifolds such that for every
n ≥ 2 the natural map DefM0(C[t]/(tn)) → DefM0(C[t]/(t2)) is surjective. Then M0

has a semiuniversal deformation M0−→M−→(H1(M0, TM0), 0).

Proof. (sketch) In the notation of Theorem IV.36 we have (q1, . . . , qs) ⊂ m2
∆,0

and then, according to Proposition III.7, q1 = . . . = qs = 0. In particular η satisfies
the Maurer-Cartan equation and by the Newlander-Nirenberg’s theorem (cf. [9, 1.4],
[78]) the small variation of almost complex structure [9, 2.1, 2.5], [78]

−η : A1,0
M → A0,1

M , −tη : T 0,1
M → T 1,0

M
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is integrable and gives a complex structure on M with structure sheaf OM,η = ker(∂+
η∂ : A0,0

M → A0,1
M ).

The projection map (M,OM,η)→ ∆ is a family with bijective Kodaira-Spencer map,
by completeness theorem I.50 it is a semiuniversal deformation.

It is useful to remind here the following result proved by Malgrange [50]

Theorem IV.38. Let q1, . . . , qm : (Cn, 0) → C be germs of holomorphic functions
and f : (Cn, 0) → C a germ of C∞ function. If ∂f ≡ 0, (mod q1, . . . , qm) then
there exists a germ of holomorphic function g : (Cn, 0) → C such that f ≡ g,
(mod q1, . . . , qm).
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CHAPTER V

Differential graded Lie algebras (DGLA)

The classical formalism (Grothendieck-Mumford-Schlessinger) of infinitesimal de-
formation theory is described by the procedure (see e.g [2], [66])

Deformation problem � Deformation functor/groupoid

The above picture is rather easy and suffices for many applications; unfortunately in
this way we forget information which can be useful.
It has been suggested by several people (Deligne, Drinfeld, Quillen, Kontsevich [43],

Schlessinger-Stasheff [68, 69], Goldman-Millson [20, 21] and many others) that a
possible and useful way to preserve information is to consider a factorization

Deformation problem � DGLA � Deformation functor/groupoid

where by DGLA we mean a differential graded Lie algebra depending from the data
of the deformation problem and the construction

DGLA � Deformation functor, L� DefL,

is a well defined, functorial procedure explained in this Chapter.
More precisely, we introduce (as in [44]) the deformation functor associated to a dif-
ferential graded Lie algebra and we prove in particular (Corollary V.52) that quasiiso-
morphic differential graded Lie algebras give isomorphic deformation functors: this
is done in the framework of Schlessinger’s theory and extended deformation functors.
We refer to [20] for a similar construction which associate to every DGLA a defor-
mation groupoid.

Some additional comments on this procedure will be done in Section 9; for the mo-
ment we only point out that, for most deformation problems, the correct DGLA is
only defined up to quasiisomorphism and then the results of this Chapter are the
necessary background for the whole theory.

In this chapter K will be a fixed field of characteristic 0. We assume that the
reader is familiar with basic concepts about Lie algebras and their representations
[31], [33]; unless otherwise stated we allow the Lie algebras to be infinite dimensional.

1. Exponential and logarithm

For every associative K -algebra R we denote by RL the associated Lie algebra with
bracket [a, b] = ad(a)b = ab − ba; the linear operator ad(a) ∈ End(R) is called the
adjoint of a, the morphism ad : RL → End(R) is a morphism of Lie algebras. If I ⊂ R
is an ideal then I is also a Lie ideal of RL

Exercise V.1. Let R be an associative K -algebra, a, b ∈ R, prove:

Marco Manetti: Lectures on deformations of complex manifolds
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1.

ad(a)nb =
n∑

i=0

(−1)i

(
n

i

)
an−ibai.

2. If a is nilpotent in R then also ad(a) is nilpotent in End(R) and

ead(a)b :=
∑
n≥0

ad(a)n

n!
b = eabe−a.

�
Let V be a fixed K -vector space and denote

P (V ) =

{ ∞∑
n=0

vn

∣∣∣∣∣ vn ∈
⊗nV

}
�

∞∏
n=0

⊗nV.

With the natural notion of sum and Cauchy product P (V ) becomes an associative
K -algebra; the vector subspace

m(V ) =

{ ∞∑
n=1

vn

∣∣∣∣∣ vn ∈
⊗nV

}
⊂ P (V )

is an ideal, m(V )s = {∑∞
n=s vn} for every s and P (V ) is complete for the m(V )-adic

topology: this means that a series
∞∑
i=0

xi is convergent whenever xi ∈ m(V )i for every

i.
In particular, it is well defined the exponential

e : m(V )→ E(V ) := 1 + m(V ) = {1 +
∞∑

n=1

vn | vn ∈
⊗nV } ⊂ P (V ), ex =

∞∑
n=0

xn

n!

and and the logarithm

log : E(V )→ m(V ), log(1 + x) =
∞∑

n=1

(−1)n−1 xn

n
.

We note that E(V ) is a multiplicative subgroup of the set of invertible elements of
P (V ) (being

∑∞
n=0 xn the inverse of 1−x, x ∈ m(V )). It is well known that exponen-

tial and logarithm are one the inverse of the other. Moreover if [x, y] = xy − yx = 0
then ex+y = exey and log((1 + x)(1 + y)) = log(1 + x) + log(1 + y).

Every linear morphism of K -vector spaces f1 : V → W induces a natural, homoge-
neous and continuous homomorphism of K -algebras f : P (V ) → P (W ). It is clear
that f(m(V )) ⊂ m(W ), f : E(V ) → E(W ) is a group homomorphism and f com-
mutes with the exponential and the logarithm.
Consider for instance the three homomorphisms

∆, p, q : P (V )→ P (V ⊕ V )

induced respectively by the diagonal ∆1(v) = (v, v), by p1(v) = (v, 0) and by q1(v) =
(0, v).
We define

l̂(V ) = {x ∈ P (V ) |∆(x) = p(x) + q(x)}, L̂(V ) = {x ∈ P (V ) |∆(x) = p(x)q(x)}.
It is immediate to observe that V ⊂ l̂(V ) ⊂ m(V ) and 1 ∈ L̂(V ) ⊂ E(V ).

Theorem V.2. In the above notation we have:
1. l̂(V ) is a Lie subalgebra of P (V )L.
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2. L̂(V ) is a multiplicative subgroup of E(V ).
3. Let f1 : V → W be a linear map and f : P (V ) → P (W ) the induced algebra

homomorphism. Then f(l̂(V )) ⊂ l̂(W ) and f(L̂(V )) ⊂ L̂(W ).
4. The exponential gives a bijection between l̂(V ) and L̂(V ).

Proof. We first note that for every n ≥ 0 and every pair of vector spaces U, W
we have a canonical isomorphism⊗n(U ⊕W ) =

n⊕
i=0

(
⊗iU ⊕⊗n−iW )

and therefore

P (U ⊕W ) =
∞∏

i,j=0

⊗iU ⊕⊗jW.

In particular for every x ∈ P (U)⊗K ⊂ P (U⊕W ), y ∈ K⊗P (W ) ⊂ P (U⊕W ) we have
xy = yx. In our case, i.e. when U = W = V this implies that p(x)q(y) = q(y)p(x)
for every x, y ∈ P (V ).
Let x, y ∈ l̂(V ) then

∆([x, y]) = ∆(x)∆(y)−∆(y)∆(x)
= (p(x) + q(x))(p(y) + q(y))− (p(y) + q(y))(p(x) + q(x))
= p([x, y]) + q([x, y]).

If x, y ∈ L̂(V ) then

∆(yx−1) = ∆(y)∆(x)−1 = p(y)q(x)q(x)−1p(x)−1 = p(yx−1)q(yx−1)

and therefore yx−1 ∈ L̂(V ).
If g : P (V ⊕V )→ P (W ⊕W ) is the algebra homomorphism induced by f1⊕ f1 : V ⊕
V → W ⊕ W it is clear that ∆f = g∆, pf = gp and qf = gq. This implies
immediately item 3.
If x ∈ l̂(V ) then the equalities

∆(ex) = e∆(x) = ep(x)+q(x) = ep(x)eq(x) = p(ex)q(ex)

prove that e(l̂(V )) ⊂ L̂(V ). Similarly if y ∈ L̂(V ) then

∆(log(y)) = log(∆(y)) = log(p(y)q(y)) = log(p(y)) + log(q(y)) = p(log(y)) + q(log(y))

and therefore log(L̂(V )) ⊂ l̂(V ).

Corollary V.3. For every vector space V the binary operation

∗ : l̂(V )× l̂(V )→ l̂(V ), x ∗ y = log(exey)

induces a group structure on the Lie algebra l̂(V ).
Moreover for every linear map f1 : V → W the induced morphism of Lie algebras
f : l̂(V )→ l̂(W ) is also a homomorphism of groups.

Proof. Clear.

In the next sections we will give an explicit formula for the product ∗ which involves
only the bracket of the Lie algebra l̂(V ).
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2. Free Lie algebras and the Baker-Campbell-Hausdorff formula

Let V be a vector space over K , we denote by

T (V ) =
⊕
n≥0

⊗nV, T (V ) =
⊕
n≥1

⊗nV ⊂ T (V ).

The tensor product induce on T (V ) a structure of unital associative algebra, the
natural embedding T (V ) ⊂ P (V ) is a morphism of unitary algebras and T (V ) is the
ideal T (V ) ∩m(V ).
The algebra T (V ) is called tensor algebra generated by V and T (V ) is called the
reduced tensor algebra generated by V .

Lemma V.4. Let V be a K -vector space and ı : V =
⊗1V → T (V ) the natural

inclusion. For every associative K -algebra R and every linear map f : V → R there
exists a unique homomorphism of K -algebras φ : T (V )→ R such that f = φı.

Proof. Clear.

Definition V.5. Let V be a K -vector space; the free Lie algebra generated by V
is the smallest Lie subalgebra l(V ) ⊂ T (V )L which contains V .

Equivalently l(V ) is the intersection of all the Lie subalgebras of T (V )L containing
V .
For every integer n > 0 we denote by l(V )n ⊂

⊗nV the linear subspace generated
by all the elements

[v1, [v2, [. . . , [vn−1, vn]].]], n > 0, v1, . . . , vn ∈ V.

By definition l(V )n = [V, l(V )n−1] and therefore ⊕n>0l(V )n ⊂ l(V ). On the other
hand the Jacobi identity [[x, y], z] = [x, [y, z]]− [y, [x, z]] implies that

[l(V )n, l(V )m] ⊂ [V, [l(V )n−1, l(V )m]] + [l(V )n−1, [V, l(V )m]]

and therefore, by induction on n, [l(V )n, l(V )m] ⊂ l(V )n+m.
As a consequence ⊕n>0l(V )n is a Lie subalgebra of l(V ) and then ⊕n>0l(V )n = l(V ),
l(V )n = l(V ) ∩⊗nV .

Every morphism of vector spaces V → W induce a morphism of algebras T (V ) →
T (W ) which restricts to a morphism of Lie algebras l(V )→ l(W ).
The name free Lie algebra of l(V ) is motivated by the following universal property:

Let V be a vector space, H a Lie algebra and f : V → H a linear map. Then there
exists a unique homomorphism of Lie algebras φ : l(V )→ H which extends f .
We will prove this property in Theorem V.6.
Let H be a Lie algebra with bracket [, ] and σ1 : V → H a linear map.

Define recursively, for every n ≥ 2, the linear map

σn :
⊗nV → H, σn(v1 ⊗ . . .⊗ vn) = [σ1(v1), σn−1(v2 ⊗ . . .⊗ vn)].

For example, if V = H and σ1 is the identity then σn(v1⊗. . .⊗vn) = [v1, [v2, [. . . , [vn−1, vn]].]].

Theorem V.6 (Dynkyn-Sprecht-Wever). In the notation above, the linear map

σ =
∞∑

n=1

σn

n
: l(V )→ H

is the unique homomorphism of Lie algebras extending σ1.
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Proof. The adjoint representation θ : V → End(H), θ(v)x = [σ1(v), x] extends
to a unique morphism of associative algebras θ : T (V )→ End(H) by the composition
rule

θ(v1 ⊗ . . .⊗ vs)x = θ(v1)θ(v2) . . . θ(vs)x.

We note that, if v1, . . . , vn, w1, . . . , wm ∈ V then

σn+m(v1 ⊗ . . .⊗ vn ⊗ w1 ⊗ . . .⊗ wm) = θ(v1 ⊗ . . .⊗ vn)σm(w1 ⊗ . . .⊗ wm).

Since every element of l(V ) is a linear combination of homogeneous elements it is
sufficient to prove, by induction on n ≥ 1, the following properties

An: If m ≤ n, x ∈ l(V )m and y ∈ l(V )n then σ(xy − yx) = [σ(x), σ(y)].
Bn: If m ≤ n, y ∈ l(V )m and h ∈ H then θ(y)h = [σ(y), h].

The initial step n = 1 is straightforward, assume therefore n ≥ 2.
[An−1 +Bn−1 ⇒ Bn] We can consider only the case m = n. The element y is a linear
combination of elements of the form ab− ba, a ∈ V , b ∈ l(V )n−1 and, using Bn−1 we
get

θ(y)h = [σ(a), θ(b)h]− θ(b)[σ(a), h] = [σ(a), [σ(b), h]]− [σ(b), [σ(a), h].

Using An−1 we get therefore

θ(y)h = [[σ(a), σ(b)], h] = [σ(y), h].

[Bn ⇒ An]

σn+m(xy − yx) = θ(x)σn(y)− θ(y)σm(x) = [σ(x), σn(y)]− [σ(y), σm(x)]
= n[σ(x), σ(y)]−m[σ(y), σ(x)] = (n + m)[σ(x), σ(y)].

Since l(V ) is generated by V as a Lie algebra, the unicity of σ follows.

Corollary V.7. For every vector space V the linear map

σ : T (V )→ l(V ), σ(v1 ⊗ . . .⊗ vn) =
1
n

[v1, [v2, [. . . , [vn−1, vn]].]]

is a projection.

Proof. The identity on l(V ) is the unique Lie homomorphism extending the
natural inclusion V → l(V ).

The linear map σ defined in Corollary V.7 extends naturally to a projector σ : P (V )→
P (V ). We have the following theorem

Theorem V.8 (Friedrichs). In the notation above

l̂(V ) = {x ∈ P (V ) |σ(x) = x} and l(V ) = T (V ) ∩ l̂(V ).

Proof. The two equalities are equivalent, we will prove the second. We have
already seen that T (V ) and l̂(V ) are Lie subalgebras of P (V )L containing V and
then l(V ) ⊂ T (V ) ∩ l̂(V ).
Define the linear map

δ : T (V )→ T (V ⊕ V ), δ(x) = ∆(x)− p(x)− q(x).

By definition T (V ) ∩ l̂(V ) = ker δ and we need to prove that if δ(x) = 0 for some
homogeneous x then x ∈ l(V ). For later computation we point out that, under the
identification T (V ⊕ V ) = T (V ) ⊗ T (V ), for every monomial

∏
i xi with xi ∈ ker δ

we have

δ(
∏

i

xi) =
∏

i

(xi ⊗ 1 + 1⊗ xi)− (
∏

i

xi)⊗ 1− 1⊗ (
∏

i

xi).
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In particular if x ∈ T (V ) then δ(x) is the natural projection of ∆(x) onto the sub-
space

⊕
i,j≥1

⊗iV ⊗⊗jV .

Let {yi | i ∈ I } be a fixed homogeneous basis of l(V ). We can find a total ordering
on the set I such that if yi ∈ l(V )n, yj ∈ l(V )m and n < m then i < j. For every
index h ∈ I we denote by Jh ⊂ T (V ) the ideal generated by y2

h and the yi’s for every
i > h, then Jh is a homogeneous ideal and yh �∈ Jh.
A standard monomial is a monomial of the form y = yi1yi2 . . . yih with i1 ≤ . . . ≤ ih.
The external degree of the above standard monomial y is by definition the positive
integer h.
Since yiyj = yjyi +

∑
h ahyh, ah ∈ K , the standard monomials generate T (V ) as a

vector space and the standard monomials of external degree 1 are a basis of l(V ).

Claim V.9. For every n > 0 the following hold:

1. The image under δ of the standard monomials of external degree h with 2 ≤
h ≤ n are linearly independent.

2. The standard monomials of external degree ≤ n are linearly independent.

Proof of Claim. Since the standard monomials of external degree 1 are lin-
early independent and contained in the kernel of δ it is immediate to see the impli-
cation [1⇒ 2].
We prove [1] by induction on n, being the statement true for n = 1.
Consider a nontrivial, finite linear combination l.c. of standard monomials of ex-
ternal degree ≥ 2 and ≤ n. There exists an index h ∈ I such that we can write
l.c. = z +

∑n
i=1 yi

hwi, where z, wi are linear combination of standard monomials in
yj , j > h and at least one of the wi is non trivial. If we consider the composition
φ of δ : T (V ) → T (V ⊕ V ) = T (V ) ⊗ T (V ) with the projection T (V ) ⊗ T (V ) →
T (V )/Jh ⊗ T (V ) we have

φ(l.c.) =
n∑

i=1

iyh ⊗ yi−1
h wi = yh ⊗

n∑
i=1

iyi−1
h wi.

Since
∑n

i=1 iyi−1
h wi is a nontrivial linear combination of standard monomials of ex-

ternal degrees ≤ n− 1, by inductive assumption, it is different from 0 on T (V ).

From the claim follows immediately that the kernel of δ is generated by the standard
monomials of degree 1 and therefore ker δ = l(V ).

Exercise V.10. Let x1, . . . , xn, y be linearly independent vectors in a vector space
V . Prove that the n! vectors

σn+1(xτ(1) . . . xτ(n)y), τ ∈ Σn,

are linearly independent in the free Lie algebra l(V ).
(Hint: Let W be a vector space with basis e0, . . . , en and consider the subalgebra
A ⊂ End(W ) generated by the endomorphisms φ1, . . . , φn, φi(ej) = δijei−1. Take a
suitable morphisms of Lie algebras l(V )→ A⊕W .) �

Our main use of the projection σ : P (V ) → l̂(V ) consists in the proof of the an
explicit description of the product ∗ : l̂(V )× l̂(V )→ l̂(V ).
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Theorem V.11 (Baker-Campbell-Hausdorff formula). For every a, b ∈ l̂(V ) we have

a ∗ b =
∑
n>0

(−1)n−1

n

∑
p1+q1>0·
pn+qn>0

(
n∑

i=1

(pi + qi)

)−1

p1!q1! . . . pn!qn!
ad(a)p1ad(b)q1 . . . ad(b)qn−1b.

In particular a ∗ b− a− b belongs to the Lie ideal of l̂(V ) generated by [a, b].

Proof. Use the formula of the statement to define momentarily a binary operator
• on l̂(V ); we want to prove that • = ∗.
Consider first the case a, b ∈ V , in this situation

a ∗ b = σ log(eaeb) = σ

∑
n>0

(−1)n−1

n

 ∑
p+q>0

apbq

p!q!

n  =

= σ


∑
n>0

(−1)n−1

n

∑
p1+q1>0·
pn+qn>0

ap1bq1 . . . apnbqn

p1!q1! . . . pn!qn!



=
∑
n>0

(−1)n−1

n

∑
p1+q1>0·
pn+qn>0

1
m

σm(ap1bq1 . . . apnbqn)
p1!q1! . . . pn!qn!

, m :=
n∑

i=1

(pi + qi).

The elimination of the operators σm gives

a ∗ b =
∑
n>0

(−1)n−1

n

∑
p1+q1>0·
pn+qn>0

(
n∑

i=1

(pi + qi)

)−1

p1!q1! . . . pn!qn!
ad(a)p1ad(b)q1 . . . ad(b)qn−1b.

Choose a vector space H and a surjective linear map H → l̂(V ), its composition with
the inclusion l̂(V ) ⊂ m(V ) ⊂ P (V ) extends to a continuous morphism of associative
algebras q : P (H)→ P (V ); since l̂(V ) is a Lie subalgebra of P (V ) we have q(l(H)n) ⊂
l̂(V ) for every n and then q(l̂(H)) ⊂ l̂(V ). Being q : l̂(H)→ l̂(V ) a morphism of Lie
algebras, we have that q commutes with •.
On the other hand q also commutes with exponential and logarithms and therefore
q commutes with the product ∗. Since ∗ = • : H ×H → l̂(H) the proof is done.

The first terms of the Baker-Campbell-Hausdorff formula are:

a ∗ b = a + b +
1
2
[a, b] +

1
12

[a, [a, b]]− 1
12

[b, [b, a]] + . . .
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3. Nilpotent Lie algebras

We recall that every Lie algebra L has a universal enveloping algebra U characterized
by the properties [31, 17.2], [33, Ch. V]:

1. U is an associative algebra and there exists an injective morphism of Lie alge-
bras i : L→ UL.

2. For every associative algebra R and every morphism f : L→ RL of Lie algebras
there exists a unique morphism of associative algebras g : U → R such that
f = gi.

A concrete exhibition of the universal enveloping algebra is given by U = T (L)/I,
where I is the ideal generated by all the elements a⊗ b− b⊗ a− [a, b], a, b ∈ L. The
only non trivial condition to check is the injectivity of the natural map L→ U . This
is usually proved using the well known Poincaré-Birkhoff-Witt’s theorem [33, Ch. V].

Exercise V.12. Prove that, for every vector space V , T (V ) is the universal en-
veloping algebra of l(V ). �

Definition V.13. The lower central series of a Lie algebra L is defined recursively
by L1 = L, Ln+1 = [L, Ln].
A Lie algebra L is called nilpotent if Ln = 0 for n >> 0.

It is clear that if L is a nilpotent Lie algebra then the adjoint operator ad(a) =
[a,−] : L → L is nilpotent for every a ∈ L. According to Engel’s theorem [31, 3.2]
the converse is true if L is finite dimensional.

Example V.14. It is immediate from the construction that the lower central series
of the free Lie algebra l(V ) ⊂ T (V ) is l(V )n =

⊕
i≥n

l(V )i = l(V ) ∩ ⊕
i≥n

⊗iV .

If V is a nilpotent Lie algebra, then the Baker-Campbell-Hausdorff formula defines
a product V × V

∗−→V ,

a ∗ b =
∑
n>0

(−1)n−1

n

∑
p1+q1>0·
pn+qn>0

(
n∑

i=1

(pi + qi)

)−1

p1!q1! . . . pn!qn!
ad(a)p1ad(b)q1 . . . ad(a)pnad(b)qn−1b.

It is clear from the definition that the product ∗ commutes with every morphism
of nilpotent Lie algebra. The identity on V induce a morphism of Lie algebras
π : l(V )→ V such that π(l(V )n) = 0 for n >> 0; this implies that π can be extended
to a morphism of Lie algebras π : l̂(V )→ V .

Proposition V.15. The Baker-Campbell-Hausdorff product ∗ induces a group struc-
ture on every nilpotent Lie algebras V .

Proof. The morphism of Lie algebras π : l̂(V )→ V is surjective and commutes
with ∗.

It is customary to denote by exp(V ) the group (V, ∗). Equivalently it is possible
to define exp(V ) as the set of formal symbols ev, v ∈ V , endowed with the group
structure evew = ev∗w.

Example V.16. Assume that V ⊂M = M(n, n, K ) is the Lie subalgebra of strictly
upper triangular matrices. Since the product of n matrices of V is always equal to 0,



4. DIFFERENTIAL GRADED LIE ALGEBRAS 71

the inclusion V → M extends to a morphism of associative algebras φ : P (V ) → M
and the morphism

φ : exp(V )→ GL(n, K ), φ(eA) =
∞∑
i=0

Ai

i!
∈ GL(n, K ).

is a homomorphism of groups.

The above example can be generalized in the following way

Example V.17. Let R be an associative unitary K -algebra, R∗ ⊂ R the multiplica-
tive group of invertible elements and N ⊂ R a nilpotent subalgebra (i.e. Nn = 0 for
n >> 0).
Let V be a nilpotent Lie algebra and ξ : V → N ⊂ R a representation. This means
that ξ : V → NL is a morphism of Lie algebras.
Denoting by ı : V ↪→U the universal enveloping algebra, we have a commutative dia-
gram

l(V ) π−→ V
ξ−→ NL� � �

T (V )
η−→ U

ψ−→ R

where π, ξ are morphisms of Lie algebras and η, ψ homomorphisms of algebras. Since
the image of the composition φ = ψη is contained in the nilpotent subalgebra N the
above diagram extends to

l̂(V ) −→ P (V )�π

�φ

V
ξ−→ R

with φ homomorphism of associative algebras. If f ∈ N it makes sense its exponential
ef ∈ R. For every v ∈ V we have eξ(v) = φ(ev) and for every x, y ∈ V

eξ(x)eξ(y) = φ(ex)φ(ey) = φ(exey) = φ(ex∗y) = eξ(x∗y).

The same assertion can be stated by saying that the exponential map eξ : (V, ∗) =
exp(V )→ R∗ is a homomorphism of groups.

4. Differential graded Lie algebras

Definition V.18. A differential graded Lie algebra (DGLA ) (L, [, ], d) is the data
of a Z-graded vector space L = ⊕i∈ZLi together a bilinear bracket [, ] : L × L → L
and a linear map d ∈ Hom1(L, L) satisfying the following condition:

1. [ , ] is homogeneous skewsymmetric: this means [Li, Lj ] ⊂ Li+j and [a, b] +
(−1)ab[b, a] = 0 for every a, b homogeneous.

2. Every triple of homogeneous elements a, b, c satisfies the (graded) Jacobi iden-
tity

[a, [b, c]] = [[a, b], c] + (−1)ab[b, [a, c]].

3. d(Li) ⊂ Li+1, d ◦ d = 0 and d[a, b] = [da, b] + (−1)a[a, db]. The map d is called
the differential of L.

Exercise V.19. Let L = ⊕Li be a DGLA and a ∈ Li:
1. If i is even then [a, a] = 0.



72 V. DIFFERENTIAL GRADED LIE ALGEBRAS (DGLA)

2. If i is odd then [a, [a, b]] =
1
2
[[a, a], b] for every b ∈ L and [[a, a], a] = 0.

�
Example V.20. If L = ⊕Li is a DGLA then L0 is a Lie algebra in the usual sense.

Conversely, every Lie algebra can be considered as a DGLA concentrated in degree
0.

Example V.21. Let (A, dA), A = ⊕Ai, be a dg-algebra over K and (L, dL), L =
⊕Li, a DGLA.
Then L⊗K A has a natural structure of DGLA by setting:

(L⊗K A)n = ⊕i(Li ⊗K An−i),

d(x⊗ a) = dLx⊗ a + (−1)xx⊗ dAa, [x⊗ a, y ⊗ b] = (−1)a y[x, y]⊗ ab.

Example V.22. Let E be a holomorphic vector bundle on a complex manifold M .
We may define a DGLA L = ⊕Lp, Lp = Γ(M,A0,p(End(E))) with the Dolbeault
differential and the natural bracket. More precisely if e, g are local holomorphic
sections of End(E) and φ, ψ differential forms we define d(φe) = (∂φ)e, [φe, ψg] =
φ ∧ ψ[e, g].

Example V.23. Let (F∗, d) be a sheaf of dg-algebras on a topological space; the
space Der∗(F∗,F∗) is a DGLA with bracket [f, g] = fg − (−1)f ggf and differential
δ(f) = [d, f ].

Definition V.24. We shall say that a DGLA L is ad0-nilpotent if for every i the
image of the adjoint action ad : L0 → End(Li) is contained in a nilpotent (associative)
subalgebra.
Exercise V.25.

1) Every nilpotent DGLA (i.e. a DGLA whose descending central series is definitively
trivial) is ad0-nilpotent.
2) If L is ad0-nilpotent then L0 is a nilpotent Lie algebra.
3) The converses of 1) and 2) are generally false. �
Definition V.26. A linear map f : L → L is called a derivation of degree n if

f(Li) ⊂ Li+n and satisfies the graded Leibnitz rule f([a, b]) = [f(a), b]+(−1)na[a, f(b)].

We note that the Jacobi identity is equivalent to the assertion that, if a ∈ Li then
ad(a) : L → L, ad(a)(b) = [a, b], is a derivation of degree i. The differential d is a
derivation of degree 1.
By following the standard notation we denote by Zi(L) = ker(d : Li → Li+1),

Bi(L) = Im(d : Li−1 → Li), H i(L) = Zi(L)/Bi(L).

Definition V.27. The Maurer-Cartan equation (also called the deformation equa-
tion) of a DGLA L is

da +
1
2
[a, a] = 0, a ∈ L1.

The solutions MC(L) ⊂ L1 of the Maurer-Cartan equation are called the Maurer-
Cartan elements of the DGLA L.

There is an obvious notion of morphisms of DGLAs; we denote by DGLA the
category of differential graded Lie algebras.
Every morphism of DGLAs induces a morphism between cohomology groups. It is
moreover clear that morphisms of DGLAs preserve the solutions of the Maurer-Cartan
equation.
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A quasiisomorphism of DGLAs is a morphism inducing isomorphisms in cohomology.
Two DGLA’s are quasiisomorphic if they are equivalent under the equivalence relation
generated by quasiisomorphisms.
The cohomology of a DGLA is itself a differential graded Lie algebra with the

induced bracket and zero differential:

Definition V.28. A DGLA L is called Formal if it is quasiisomorphic to its coho-
mology DGLA H∗(L).

Exercise V.29. Let D : L → L be a derivation, then the kernel of D is a graded
Lie subalgebra. �

Example V.30. Let (L, d) be a DGLA and denote Deri(L, L) the space of deriva-
tions f : L → L of degree i. The space Der∗(L, L) = ⊕iDeri(L, L) is a DGLA with
bracket [f, g] = fg − (−1)f ggf and differential δ(f) = [d, f ].

For a better understanding of some of next topics it is useful to consider the following
functorial construction. Given a DGLA (L, [, ], d) we can construct a new DGLA
(L′, [, ]′, d′) by setting (L′)i = Li for every i �= 1, (L′)1 = L1⊕K d (here d is considered
as a formal symbol of degree 1) with the bracket and the differential

[a + vd, b + wd]′ = [a, b] + vd(b) + (−1)awd(a), d′(a + vd) = [d, a + vd]′ = d(a).

The natural inclusion L ⊂ L′ is a morphism of DGLA; for a better understanding
of the Maurer-Cartan equation it is convenient to consider the affine embedding
φ : L1 → (L′)1, φ(a) = a + d. For an element a ∈ L1 we have

d(a) +
1
2
[a, a] = 0 ⇐⇒ [φ(a), φ(a)]′ = 0.

Let’s now introduce the notion of gauge action on the Maurer-Cartan elements of an
ad0-nilpotent DGLA. Note that [L0, L1⊕K d] ⊂ L1; in particular if L is ad0-nilpotent
then also L′ is ad0-nilpotent.
Given an ad0-nilpotent DGLA N , the exponential of the adjoint action gives homo-

morphisms of groups

exp(N0) = (N0, ∗)→ GL(N i), ea �→ ead(a), i ∈ Z

where ∗ is the product given by the Baker-Campbell-Hausdorff formula.
These homomorphisms induce actions of the group exp(N0) onto the vector spaces
N i given by

eab = ead(a)b =
∑
n≥0

1
n!

ad(a)n(b).

Lemma V.31. In the above notation, if W is a linear subspace of N i and [N0, N i] ⊂
W then the exponential adjoint action preserves the affine subspaces v + W , v ∈ Ni.

Proof. Let a ∈ N0, v ∈ N i, w ∈W , then

ea(v + w) = v +
∑
n≥1

1
n!

ad(a)n−1([a, v]) +
∑
n≥0

1
n!

ad(a)n(w).

Lemma V.32. In the above notation the exponential adjoint action preserves the
quadratic cone Z = {v ∈ N1 | [v, v] = 0}.
For every v ∈ Z and u ∈ N−1 the element exp([u, v]) belongs to the stabilizer of v.
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Proof. By Jacobi identity 2[v, [a, v]] = −2[v, [v, a]] = [a, [v, v]] for every a ∈ N0,
v ∈ N1.
Let a ∈ N0 be a fixed element, for every u ∈ N1 define the polynomial function
Fu : K → N2 by

Fu(t) = e−ad(ta)[ead(ta)u, ead(ta)u].

For every s, t ∈ K , if v = ead(sa)u then

Fu(t + s) = ead(−sa)Fv(t),
∂Fv

∂t
(0) = −[a, [v, v]] + 2[v, [a, v]] = 0

∂Fu

∂t
(s) = ead(−sa)u

∂Fv

∂t
(0) = 0.

Since the field K has characteristic 0 every function Fv is constant, proving the
invariance of Z.
If u ∈ N−1 and v ∈ Z, then by Jacobi identity [[u, v], v] = ad([u, v])v = 0 and then
exp([u, v])v = v.

If L is an ad0-nilpotent DGLA then V.31 and V.32 can be applied to N = L′. Via the
affine embedding φ : L1 → (L′)1, the exponential of the adjoint action on L′ induces
the so called Gauge action of exp(L0) over the set of solution of the Maurer-Cartan
equation, given explicitly by

exp(a)(w) = φ−1
(
ead(a)φ(w)

)
=

∑
n≥0

1
n!

ad(a)n(w)−
∑
n≥1

1
n!

ad(a)n−1(da)

= w +
∑
n≥0

ad(a)n

(n + 1)!
([a, w]− da).

Remark V.33. If w is a solution of the Maurer-Cartan equation and u ∈ L−1 then
[w, u] + du = [w + d, u] ∈ L0 belongs to the stabilizer of w under the gauge action.
For every a ∈ L0, w ∈ L1, the polynomial γ(t) = exp(ta)(w) ∈ L1 ⊗ K [t] is the
solution of the “Cauchy problem”

dγ(t)
dt

= [a, γ(t)]− da

γ(0) = w

5. Functors of Artin rings

5-A. Basic definitions. We denote by:
• Set the category of sets in a fixed universe; we also make the choice of a fixed

set {0} ∈ Set of cardinality 1.
• Grp the category of groups.
• ArtK the category of local Artinian K -algebras with residue field K (with as

morphisms the local homomorphisms). If A ∈ ArtK , we will denote by mA its
maximal ideal.

A small extension e in ArtK is an exact sequence of abelian groups

e : 0−→M
i−→B

p−→A−→0

such that B
p−→A is a morphism in ArtK and ker p = i(M) is annihilated by the

maximal ideal of B (that is, as a B-module it is a K -vector space).
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Given a surjective morphism B → A in ArtK with kernel J , there exists a sequence
of small extensions

0−→mn
BJ/mn+1

B J−→B/mn+1
B J−→B/mn

BJ−→0, n ≥ 0.

Since, by Nakayama’s lemma, there exists n0 ∈ N such that mn
BJ = 0 for every n ≥ n0

we get that every surjective morphism is ArtK is the composition of a finite number
of small extensions.

Definition V.34. A Functor of Artin rings is a covariant functor F : ArtK → Set
such that F (K ) � {0}.
Example V.35. If V is a K -vector space we may interpret V as a functor of Artin

rings V : ArtK → Set, V (A) = V ⊗K mA. If V = 0 we get the trivial functor
0: ArtK → Set.

The functors of Artin rings are the object of a new category whose morphisms are
the natural transformation of functors. A natural transformation η : F → G is an
isomorphism if and only if η(A) : F (A)→ G(A) is bijective for every A ∈ ArtK .

Definition V.36. Let F, G : ArtK → Set be two functors of Artin rings and
η : F → G a natural transformation; η is called smooth if for every small extension

0−→M−→B
p−→A−→0

the map

(η, p) : F (B)→ G(B)×G(A) F (A)

is surjective.
A functor of Artin rings F is called smooth if the morphism F → 0 is smooth.

Exercise V.37. F : ArtK → Set is smooth if and only if for every surjective mor-
phism B → A is ArtK , the map F (B)→ F (A) is also surjective.
If V is a vector space then V is smooth as a functor of Artin rings (cf. Exam-
ple V.35). �
Exercise V.38. Let R be an analytic algebra and let hR : ArtC → Set be the

functor of Artin rings defined by hR(A) = MorAn(R, A).
Prove that hR is smooth if and only if R is smooth. �
Example V.39. Let M0 be a compact complex manifold and define for every A ∈

ArtC

DefM0(A) = DefM0(OX,0) = DefM0(X, 0)

where (X, 0) = Spec(A) is a fat point such that OX,0 = A; since it is always possible
to write A as a quotient of C{z1, . . . , zn} for some n ≥ 0, such a fat point (X, 0)
always exists. According to III.12 the isomorphism class of (X, 0) depends only on
A.
Every morphism OX,0 → OY,0 in ArtC is induced by a unique morphism (Y, 0) →
(X, 0). The pull-back of infinitesimal deformations gives a morphism DefM0(X, 0)→
DefM0(Y, 0). Therefore DefM0 : ArtC → Set is a functor of Artin rings.

Definition V.40. The tangent space to a functor of Artin rings F : ArtK → Set
is by definition

tF = F

(
K [t]
(t2)

)
= F (K ⊕K ε), ε2 = 0.
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Exercise V.41. Prove that, for every analytic algebra R there exists a natural
isomorphism thR

= DerC(R, C) (see Exercise V.38). �

5-B. Automorphisms functor. In this section every tensor product is in-
tended over K , i.e ⊗ = ⊗K . Let S

α−→R be a morphism of graded K -algebras,
for every A ∈ ArtK we have natural morphisms S ⊗A

α−→R⊗A and R⊗K A
p−→R,

p(x⊗ a) = xa, where a ∈ K is the class of a in the residue field of A.

Lemma V.42. Given A ∈ ArtK and a commutative diagram of morphisms of graded
K -algebras

S ⊗A
α ��

α

��

R⊗A

p

��
R⊗A

f
����������� p �� R

we have that f is an isomorphism and f(R⊗ J) ⊂ R⊗ J for every ideal J ⊂ A.

Proof. f is a morphism of graded A-algebras, in particular for every ideal J ⊂ A,
f(R⊗J) ⊂ Jf(R⊗A) ⊂ R⊗J . In particular, if B = A/J , then f induces a morphism
of graded B-algebras f : R⊗B → R⊗B.
We claim that if mAJ = 0 then f is the identity on R ⊗ J ; in fact for every x ∈ R,
f(x⊗ 1)− x⊗ 1 ∈ ker p = R⊗mA and then if j ∈ J , x ∈ R.

f(x⊗ j) = jf(x⊗ 1) = x⊗ j + j(f(x⊗ 1)− x⊗ 1) = x⊗ j.

Now we prove the lemma by induction on n = dimK A, being f the identity for n = 1.
Let

0−→J−→A−→B−→0

be a small extension with J �= 0. Then we have a commutative diagram with exact
rows

0 −→ R⊗ J −→ R⊗A −→ R⊗B −→ 0�Id

�f

�f

0 −→ R⊗ J −→ R⊗A −→ R⊗B −→ 0

By induction f is an isomorphism and by snake lemma also f is an isomorphism.

Definition V.43. For every A ∈ ArtK let AutR/S(A) be the set of commutative
diagrams of graded K -algebra morphisms

S ⊗A ��

��

R⊗A

��
R⊗A

f
�����������
�� R

According to Lemma V.42 AutR/S is a functor from the category ArtK to the
category of groups Grp. Here we consider AutR/S as a functor of Artin rings (just
forgetting the group structure).
Let Der0S(R, R) be the space of S-derivations R→ R of degree 0. If A ∈ ArtK and

J ⊂ mA is an ideal then, since dimK J <∞ there exist natural isomorphisms

Der0S(R, R)⊗ J = Der0S(R, R⊗ J) = Der0S⊗A(R⊗A, R⊗ J),
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where d =
∑

i di ⊗ ji ∈ Der0S(R, R)⊗ J corresponds to the S ⊗A-derivation

d : R⊗A→ R⊗ J ⊂ R⊗A, d(x⊗ a) =
∑

i

di(x)⊗ jia.

For every d ∈ Der0S⊗A(R⊗A, R⊗A) denote dn = d ◦ . . . ◦ d the iterated composition
of d with itself n times. The generalized Leibnitz rule gives

dn(uv) =
n∑

i=0

(
n

i

)
di(u)dn−1(v), u, v ∈ R⊗A.

Note in particular that if d ∈ Der0S(R, R)⊗ mA then d is a nilpotent endomorphism
of R⊗A and

ed =
∑
n≥0

dn

n!

is a morphism of K -algebras belonging to AutR/S(A).

Proposition V.44. For every A ∈ ArtK the exponential

exp : Der0S(R, R)⊗mA → AutR/S(A)

is a bijection.

Proof. This is obvious if A = K ; by induction on the dimension of A we may
assume that there exists a nontrivial small extension

0−→J−→A−→B−→0

such that exp : Der0S(R, R)⊗mB → AutR/S(B) is bijective.
We first note that if d ∈ Der0S(R, R)⊗mA, h ∈ Der0S(R, R)⊗ J then dihj = hjdi = 0
whenever j > 0, j + i ≥ 2 and then ed+h = ed + h; this easily implies that exp is
injective.
Conversely take a f ∈ AutR/S(A); by the inductive assumption there exists d ∈
Der0S(R, R)⊗mA such that f = ed ∈ AutR/S(B); denote h = f − ed : R⊗A→ R⊗J .
Since h(ab) = f(a)f(b)− ed(a)ed(b) = h(a)f(b) + ed(a)h(b) = h(a)b + ah(b) we have
that h ∈ Der0S(R, R)⊗ J and then f = ed+h.

The same argument works also if S → R is a morphism of sheaves of graded K -
algebras over a topological space and Der0S(R, R), AutR/S(A) are respectively the
vector space of S-derivations of degree 0 of R and the S ⊗A-algebra automorphisms
of R⊗A lifting the identity on R.

Example V.45. Let M be a complex manifold, R = A0,∗
M , S = Ω∗

M . According
to Proposition IV.24 Der0S(R, R) = Γ(M,A0,0(TM )) and then the exponential gives
isomorphisms

exp : Γ(M,A0,0(TM ))⊗mA → AutR/S(A).

Since exp is clearly functorial in A, interpreting the vector space Γ(M,A0,0(TM )) as a
functor ( Example V.35), we have an isomorphism of functors exp : Γ(M,A0,0(TM ))→
AutR/S .
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5-C. The exponential functor. Let L be a Lie algebra over K , V a K -vector
space and ξ : L→ End(V ) a representation of L.
For every A ∈ ArtK the morphism ξ can be extended naturally to a morphism of Lie
algebras ξ : L⊗A→ EndA(V ⊗A). Taking the exponential we get a functorial map

exp(ξ) : L⊗mA → GLA(V ⊗A), exp(ξ)(x) = eξ(x) =
∞∑
i=0

ξn

n!
x,

where GLA denotes the group of A-linear invertible morphisms.
Note that exp(ξ)(−x) = (exp(ξ)(x))−1. If ξ is injective then also exp(ξ) is injective
(easy exercise).

Theorem V.46. In the notation above the image of exp(ξ) is a subgroup. More
precisely for every a, b ∈ L ⊗ mA there exists c ∈ L ⊗ mA such that eξ(a)eξ(b) = eξ(c)

and a + b− c belong to the Lie ideal of L⊗mA generated by [a, b].

Proof. This is an immediate consequence of the Campbell-Baker-Hausdorff for-
mula.

In the above notation denote P = End(V ) and let ad(ξ) : L → End(P ) be the
adjoint representation of ξ,

ad(ξ)(x)f = [ξ(x), f ] = ξ(x)f − fξ(x).

Then for every a ∈ L ⊗ mA, f ∈ EndA(V ⊗ A) = P ⊗ A we have (cf. Exercise V.1,
[31, 2.3])

ead(ξ)(a)f = eξ(a)fe−ξ(a).

6. Deformation functors associated to a DGLA

Let L = ⊕Li be a DGLA over K , we can define the following three functors:
1. The Gauge functor GL : ArtK → Grp, defined by GL(A) = exp(L0 ⊗mA). It

is immediate to see that GL is smooth.
2. The Maurer-Cartan functor MCL : ArtK → Set defined by

MCL(A) = MC(L⊗mA) =
{

x ∈ L1 ⊗mA

∣∣∣∣ dx +
1
2
[x, x] = 0

}
.

3. The gauge action of the group exp(L0 ⊗ mA) on the set MC(L ⊗ mA) is
functorial in A and gives an action of the group functor GL over MCL. We
call DefL = MCL/GL the corresponding quotient. By definition DefL(A) =
MCL(A)/GL(A) for every A ∈ ArtK .
The functor DefL is called the deformation functor associated to the DGLA
L.

The reader should make attention to the difference between the deformation functor
DefL associated to a DGLA L and the functor of deformations of a DGLA L.

Proposition V.47. Let L = ⊕Li be a DGLA. If [L1, L1] ∩ Z2(L) ⊂ B2(L) (e.g. if
H2(L) = 0) then MCL and DefL are smooth functors.

Proof. It is sufficient to prove that for every small extension

0−→J−→A
α−→B−→0

the map MC(L⊗mA) α−→MC(L⊗mB) is surjective.
Given y ∈ L1 ⊗mB such that dy + 1

2 [y, y] = 0 we first choose x ∈ L1 ⊗mA such that
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α(x) = y; we need to prove that there exists z ∈ L1⊗J such that x−z ∈MC(L⊗mA).

Denote h = dx +
1
2
[x, x] ∈ L2 ⊗ J ; we have

dh = d2x + [dx, x] = [h, x]− 1
2
[[x, x], x].

Since [L2 ⊗ J, L1 ⊗ mA] = 0 we have [h, x] = 0, by Jacobi identity [[x, x], x] = 0 and
then dh = 0, h ∈ Z2(L)⊗ J .
On the other hand h ∈ ([L1, L1] + B2(L))⊗mA, using the assumption of the Propo-
sition h ∈ (B2(L)⊗mA)∩L2⊗J and then there exist z ∈ L1⊗mA such that dz = h.
Since Z1(L)⊗mA → Z1(L)⊗mB is surjective it is possible to take z ∈ L1 ⊗ J : it is
now immediate to observe that x− z ∈MC(L⊗mA).

Exercise V.48. Prove that if MCL is smooth then [Z1, Z1] ⊂ B2. �

Proposition V.49. If L⊗mA is abelian then DefL(A) = H1(L)⊗mA. In particular
tDefL

= H1(L)⊗K ε, ε2 = 0.

Proof. The Maurer-Cartan equation reduces to dx = 0 and then MCL(A) =
Z1(L)⊗mA. If a ∈ L0 ⊗mA and x ∈ L1 ⊗mA we have

exp(a)x = x +
∑
n≥0

ad(a)n

(n + 1)!
([a, x]− da) = x− da

and then DefL(A) =
Z1(L)⊗mA

d(L0 ⊗mA)
= H1(L)⊗mA.

Exercise V.50. If [Z1, Z1] = 0 then MCL(A) = Z1 ⊗mA for every A. �

It is clear that every morphism α : L→ N of DGLA induces morphisms of functors
GL → GN , MCL →MCN . These morphisms are compatible with the gauge actions
and therefore induce a morphism between the deformation functors Defα : DefL →
DefN .
The following Theorem V.51 (together its Corollary V.52) is sometimes called the

basic theorem of deformation theory. For the clarity of exposition the (nontrivial)
proof of V.51 is postponed at the end of Section 8.

Theorem V.51. Let φ : L → N be a morphism of differential graded Lie algebras
and denote by H i(φ) : H i(L)→ H i(N) the induced maps in cohomology.

1. If H1(φ) is surjective and H2(φ) injective then the morphism Defφ : DefL →
DefN is smooth.

2. If H0(φ) is surjective, H1(φ) is bijective and H2(φ) is injective then Defφ : DefL →
DefN is an isomorphism.

Corollary V.52. Let L→ N be a quasiisomorphism of DGLA. Then the induced
morphism DefL → DefN is an isomorphism.

Exercise V.53. Let L be a formal DGLA, then DefL is smooth if and only if the
induced bracket [ , ] : H1 ×H1 → H2 is zero. �

Example V.54. Let L = ⊕Li be a DGLA and choose a vector space decomposition
N1 ⊕B1(L) = L1.
Consider the DGLA N = ⊕N i where N i = 0 if i < 1 and N i = Li if i > 1
with the differential and bracket induced by L. The natural inclusion N → L gives
isomorphisms H i(N)→ H i(L) for every i ≥ 1. In particular the morphism DefN →
DefL is smooth and induce an isomorphism on tangent spaces tDefN

= tDefL
.
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Beware. One of the most frequent wrong interpretations of Corollary V.52 asserts
that if L → N is a quasiisomorphism of nilpotent DGLA then MC(L)/exp(L0) →
MC(N)/exp(N0) is a bijection. This is false in general: consider for instance L = 0
and N = ⊕N i with N i = C for i = 1, 2, N i = 0 for i �= 1, 2, d : N1 → N2 the identity
and [a, b] = ab for a, b ∈ N1 = C.

Let TM be the holomorphic tangent bundle of a complex manifold M . The Kodaira-
Spencer DGLA is defined as

KS(M) = ⊕KS(M)p, KS(M)p = Γ(M,A0,p(TM ))

with the Dolbeault differential and the bracket (cf. Proposition IV.24)

[φdzI , ψdzJ ] = [φ, ψ]dzI ∧ dzJ

for φ, ψ ∈ A0,0(TM ), I, J ⊂ {1, ..., n} and z1, ..., zn local holomorphic coordinates.

Theorem V.55. Let L = KS(M0) be the Kodaira-Spencer differential graded Lie
algebra of a compact complex manifold M0. Then there exists an isomorphism of
functors

DefM0 = DefL.

Proof. Fix A ∈ ArtC, according to Propositions IV.24 and V.44 the exponential

exp : L0 ⊗mA = Γ(M0,A0,0(TM0))⊗mA → AutA0,∗/Ω
∗(A)

is an isomorphism.
Therefore DefM0 is the quotient of

MCL(A) =
{

η ∈ Γ(M0,A0,1(TM0))⊗mA

∣∣∣∣ ∂η +
1
2
[η, η] = 0

}
,

by the equivalence relation ∼, given by η ∼ µ if and only if there exists a ∈ L0 ⊗mA

such that

∂ + µ = ea(∂ + η)e−a = ead(a)(∂ + η)

or, equivalently, if and only if φ(µ) = ead(a)φ(η), where φ is the affine embedding
defined above.
Keeping in mind the definition of the gauge action on the Maurer-Cartan elements we
get immediately that this equivalence relation on MCL(A) is exactly the one induced
by the gauge action of exp(L0 ⊗mA).

Corollary V.56. Let M0 be a compact complex manifold. If either H2(M0, TM0) =
0 or its Kodaira-Spencer DGLA KS(M0) is quasiisomorphic to an abelian DGLA,
then DefM0 is smooth.

7. Extended deformation functors (EDF)

We will always work over a fixed field K of characteristic 0. All vector spaces,
linear maps, algebras, tensor products etc. are understood of being over K , unless
otherwise specified.
We denote by:
• NA the category of all differential Z-graded associative (graded)-commutative

nilpotent finite dimensional K -algebras.
• By NA ∩DG we denote the full subcategory of A ∈ NA with trivial multi-

plication, i.e. A2 = 0.
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In other words an object in NA is a finite dimensional complex A = ⊕Ai ∈ DG
endowed with a structure of dg-algebra such that An = AA . . . A = 0 for n >> 0.
Note that if A = A0 is concentrated in degree 0, then A ∈ NA if and only if A is the
maximal ideal of a local artinian K -algebra with residue field K .
If A ∈ NA and I ⊂ A is a differential ideal, then also I ∈ NA and the inclusion
I → A is a morphism of dg-algebras.

Definition V.57. A small extension in NA is a short exact sequence in DG

0−→I−→A
α−→B−→0

such that α is a morphism in NA and I is an ideal of A such that AI = 0; in addition
it is called acyclic if I is an acyclic complex, or equivalently if α is a quasiisomorphism.

Exercise V.58.
• Every surjective morphism A

α−→B in the category NA is the composition of
a finite number of small extensions.
• If A

α−→B is a surjective quasiisomorphism in NA and Ai = 0 for every i > 0
then α is the composition of a finite number of acyclic small extensions. This
is generally false if Ai �= 0 for some i > 0.

�

Definition V.59. A covariant functor F : NA → Set is called a predeformation
functor if the following conditions are satisfied:

1. F (0) = 0 is the one-point set.
2. For every pair of morphisms α : A→ C, β : B → C in NA consider the map

η : F (A×C B)→ F (A)×F (C) F (B)

Then:
(a) η is surjective when α is surjective.
(b) η is bijective when α is surjective and C ∈ NA ∩ DG is an acyclic

complex.
3. For every acyclic small extension

0−→I−→A−→B−→0

the induced map : F (A)→ F (B) is surjective.

If we consider the above definition for a functor defined only for algebras concen-
trated in degree 0, then condition 3 is empty, while conditions 1 and 2 are essentially
the classical Schlessinger’s conditions [67], [13], [52].

Lemma V.60. For a covariant functor F : NA→ Set with F (0) = 0 it is sufficient
to check condition 2b of definition V.59 when C = 0 and when B = 0 separately.

Proof. Follows immediately from the equality

A×C B = (A×B)×C 0

where A
α−→C, B

β−→C are as in 2b of V.59 and the fibred product on the right comes
from the morphism A×B → C, (a, b) �→ α(a)− β(b).

Definition V.61. A predeformation functor F : NA→ Set is called a deformation
functor if F (I) = 0 for every acyclic complex I ∈ NA ∩DG.

The predeformation functors (resp.: deformation functors) together their natural
transformations form a category which we denote by PreDef (resp.: Def).
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Lemma V.62. Let F : NA→ Set be a deformation functor. Then:

1. For every acyclic small extension

0−→I−→A−→B−→0

the induced map : F (A)→ F (B) is bijective.
2. For every pair of complexes I, J ∈ NA ∩ DG and every pair of homotopic

morphisms f, g : I → J , we have F (f) = F (g) : F (I)→ F (J).

Proof. We need to prove that for every acyclic small extension

0−→I−→A
ρ−→B−→0

the diagonal map F (A) → F (A) ×F (B) F (A) is surjective; in order to prove this it
is sufficient to prove that the diagonal map A → A ×B A induces a surjective map
F (A)→ F (A×B A). We have a canonical isomorphism θ : A×I → A×B A, θ(a, x) =
(a, a+x) which sends A×{0} onto the diagonal; since F (A×I) = F (A)×F (I) = F (A)
the proof of item 1 is concluded.
For item 2, we can write I = I0× I1, J = J0×J1, with d(I0) = d(J0) = 0 and I1, J1

acyclic. Then the inclusion I0 i−→I and the projection J
p−→J0 induce bijections

F (I0) = F (I), F (J0) = F (J). It is now sufficient to note that pfi = pgi : I0 →
J0.

A standard argument in Schlessinger’s theory [67, 2.10] shows that for every pre-
deformation functor F and every A ∈ NA ∩DG there exists a natural structure of
vector space on F (A), where the sum and the scalar multiplication are described by
the maps

A×A
+−→A ⇒ F (A×A) = F (A)× F (A) +−→F (A)

s ∈ K , A
·s−→A ⇒ F (A) ·s−→F (A)

We left as an exercise to check that the vector space axioms are satisfied; if A → B
is a morphism in NA ∩DG then the commutativity of the diagrams

A×A
+−→ A� �

B ×B
+−→ B

,

A
·s−→ A� �

B
·s−→ B

, s ∈ K

shows that F (A) → F (B) is K -linear. Similarly if F → G is a natural transfor-
mations of predeformation functors, the map F (A) → G(A) is K -linear for every
A ∈ NA ∩DG.

In particular, for every predeformation functor F and for every integer n the sets
F (Ω[n]) (see Example IV.7) and F (K [n]) are vector spaces and the projection p : Ω[n]→
K [n] induce a linear map F (Ω[n])→ F (K [n])

Definition V.63. Let F be a predeformation functor, the tangent space of F is the
graded vector space TF [1], where

TF =
⊕
n∈Z

TnF, Tn+1F = TF [1]n = coker(F (Ω[n])
p−→F (K [n])), n ∈ Z.

A natural transformation F → G of predeformation functors is called a quasiisomor-
phism if induces an isomorphism on tangent spaces, i.e. if TnF � TnG for every
n.
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We note that if F is a deformation functor then F (Ω[n]) = 0 for every n and
therefore TF [1]n = Tn+1F = F (K ε), where ε is an indeterminate of degree −n ∈ Z

such that ε2 = 0.
In particular T 1F = tF 0 , where F 0 : ArtK → Set, F 0(A) = F (mA), is the truncation
of F in degree 0.

One of the most important examples of deformation functors is the deformation
functor associated to a differential graded Lie algebra.

Given a DGLA L and A ∈ NA, the tensor product L ⊗ A has a natural structure
of nilpotent DGLA with

(L⊗A)i =
⊕
j∈Z

Lj ⊗Ai−j

d(x⊗ a) = dx⊗ a + (−1)xx⊗ da

[x⊗ a, y ⊗ b] = (−1)a y[x, y]⊗ ab

Every morphism of DGLA, L→ N and every morphism A→ B in NA give a natural
commutative diagram of morphisms of differential graded Lie algebras

L⊗A −→ N ⊗A� �
L⊗B −→ N ⊗B

The Maurer-Cartan functor MCL : NA→ Set of a DGLA L is by definition

MCL(A) = MC(L⊗A) =
{

x ∈ (L⊗A)1
∣∣∣∣ dx +

1
2
[x, x] = 0

}
.

Lemma V.64. For every differential graded Lie algebra L, MCL is a predeformation
functor.

Proof. It is evident that MCL(0) = 0 and for every pair of morphisms α : A→
C, β : B → C in NA we have

MCL(A×C B) = MCL(A)×MCL(C) MCL(B)

Let 0−→I−→A
α−→B−→0 be an acyclic small extension and x ∈ MCL(B). Since α

is surjective there exists y ∈ (L⊗A)1 such that α(y) = x. Setting

h = dy +
1
2
[y, y] ∈ (L⊗ I)2

we have

dh =
1
2
d[y, y] = [dy, y] = [h, y]− 1

2
[[y, y], y].

By Jacobi identity [[y, y], y] = 0 and, since AI = 0 also [h, y] = 0; thus dh = 0 and,
being L⊗ I acyclic by Künneth formula, there exists s ∈ (L⊗ I)1 such that ds = h.
The element y−s lifts x and satisfies the Maurer-Cartan equation. We have therefore
proved that MCL is a predeformation functor.

Exercise V.65. Prove that MC : DGLA → PreDef is a faithful functor and
every differential graded Lie algebra can be recovered, up to isomorphism, from its
Maurer-Cartan functor. �
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It is interesting to point out that, if A→ B is a surjective quasiisomorphism in NA,
then in general MCL(A)→MCL(B) is not surjective. As an example take L a finite-
dimensional non-nilpotent complex Lie algebra, considered as a DGLA concentrated
in degree 0 and fix a ∈ L such that ad(a) : L → L has an eigenvalue λ �= 0. Up to
multiplication of a by −λ−1 we can assume λ = −1. Let V ⊂ L be the image of
ad(a), the linear map Id+ad(a) : V → V is not surjective and then there exists b ∈ L
such that the equation x + [a, x] + [a, b] = 0 has no solution in L.
Let u, v, w be indeterminates of degree 1 and consider the dg-algebras

B = Cu⊕ Cv, B2 = 0, d = 0

A = Cu⊕ Cv ⊕ Cw ⊕ Cdw, uv = uw = dw, vw = 0

The projection A→ B is a quasiisomorphism but the element a⊗u+b⊗v ∈MCL(B)
cannot lifted to MCL(A). In fact if there exists ξ = a⊗u+ b⊗ v +x⊗w ∈MCL(A)
then

0 = dξ +
1
2
[ξ, ξ] = (x + [a, x] + [a, b])⊗ dw

in contradiction with the previous choice of a, b.

For every DGLA L and every A ∈ NA we define DefL(A) as the quotient of MC(L⊗
A) by the gauge action of the group exp((L⊗A)0). The gauge action commutes with
morphisms in NA and with morphisms of differential graded Lie algebras; therefore
the above definition gives a functor DefL : NA→ Set.

Theorem V.66. For every DGLA L, DefL : NA → Set is a deformation functor
with T iDefL = H i(L).

Proof. If C ∈ NA∩DG is a complex then L⊗C is an abelian DGLA and accord-
ing to Proposition V.49, MCL(C) = Z1(L⊗ C) and DefL(C) = H1(L⊗ C). In par-
ticular T iDefL = H1(L⊗K [i− 1]) = H i(L) and, by Künneth formula, DefL(C) = 0
if C is acyclic.

Since DefL is the quotient of a predeformation functor, conditions 1 and 3 of V.59
are trivially verified and then it is sufficient to verify condition 2.
Let α : A → C, β : B → C morphism in NA with α surjective. Assume there are
given a ∈ MCL(A), b ∈ MCL(B) such that α(a) and β(b) give the same element in
DefL(C); then there exists u ∈ (L⊗ C)0 such that β(b) = euα(a). Let v ∈ (L⊗ A)0

be a lifting of u, changing if necessary a with its gauge equivalent element eva, we
may suppose α(a) = β(b) and then the pair (a, b) lifts to MCL(A×C B): this proves
that the map

DefL(A×C B)→ DefL(A)×DefL(C) DefL(B)

is surjective.
If C = 0 then the gauge action exp((L⊗ (A×B))0)×MCL(A×B)→MCL(A×B)

is the direct product of the gauge actions exp((L ⊗ A)0) ×MCL(A) → MCL(A),
exp((L ⊗ B)0) × MCL(B) → MCL(B) and therefore DefL(A × B) = DefL(A) ×
DefL(B).
Finally assume B = 0, C acyclic complex and denote D = kerα � A ×C B. Let

a1, a2 ∈MCL(D), u ∈ (L⊗A)0 be such that a2 = eua1; we need to prove that there
exists v ∈ (L⊗D)0 such that a2 = eva1.
Since α(a1) = α(a2) = 0 and L⊗C is an abelian DGLA we have 0 = eα(u)0 = 0−dα(u)
and then dα(u) = 0. L ⊗ C is acyclic and then there exists h ∈ (L ⊗ A)−1 such
that dα(h) = −α(u) and u + dh ∈ (L ⊗ D)0. Setting w = [a1, h] + dh, then,
according to Remark V.33, ewa1 = a1 and euewa1 = eva1 = a2, where v = u ∗ w



8. THE INVERSE FUNCTION THEOREM 85

is determined by Baker-Campbell-Hausdorff formula. We claim that v ∈ L ⊗D: in
fact v = u ∗ w ≡ u + w ≡ u + dh (mod [L ⊗ A, L ⊗ A]) and since A2 ⊂ D we have
v = u ∗ w ≡ u + dh ≡ 0 (mod L⊗D).

Lemma V.67. For every DGLA L, the projection π : MCL → DefL is a quasiiso-
morphism.

Proof. Let i ∈ Z be fixed; in the notation of V.63 we can write Ω[i − 1] =
K ε⊕K dε, where ε2 = εdε = (dε)2 = 0 and ε = 1− i, dε = 2− i. We have

MCL(K ε) = {xε ∈ (L⊗K ε)1|d(xε) = 0} = Zi(L)⊗K ε

MCL(K ε⊕K dε) = {xε + ydε ∈ (L⊗ Ω[i− 1])1 | dxε + (−1)1−ixdε + dydε = 0}
= {(−1)idyε + ydε| y ∈ Li−1}.

Therefore the image of p : MCL(K ε⊕K dε)→MCL(K ε) is exactly Bi(L)⊗K ε and
then

MCL(Ω[i− 1])
p−→MCL(K [i− 1]) π−→DefL(K [i− 1])−→0

is exact.

8. Obstruction theory and the inverse function theorem for deformation
functors

Lemma V.68. Let F : NA→ Set be a deformation functor; for every complex I ∈
NA ∩DG there exists a natural isomorphism

F (I) =
⊕
i∈Z

TF [1]i ⊗H−i(I) =
⊕
i∈Z

T i+1F ⊗H−i(I) = H1(TF ⊗ I).

Proof. Let s : H∗(I) → Z∗(I) be a linear section of the natural projection,
then the composition of s with the natural embedding Z∗(I) → I is unique up to
homotopy and its cokernel is an acyclic complex, therefore it gives a well defined
isomorphism F (H∗(I)) → F (I). This says that it is not restrictive to prove the
lemma for complexes with zero differential. Moreover since F commutes with direct
sum of complexes we can reduce to consider the case when I = K s[n] is a vector space
concentrated in degree −n. Every v ∈ I gives a morphism TF [1]n = F (K [n]) v−→F (I)
and we can define a natural map TF [1]n ⊗ I → F (I), x ⊗ v �→ v(x). It is easy to
verify that this map is an isomorphism of vector spaces.

Theorem V.69. Let 0−→I
ι−→A

α−→B−→0 be an exact sequence of morphisms in
NA and let F : NA→ Set be a deformation functor.

1. If AI = 0 then there exist natural transitive actions of the abelian group F (I)
on the nonempty fibres of F (A)→ F (B).

2. If AI = 0 then there exists a natural “obstruction map” F (B) ob−→F (I[1]) with
the property that ob(b) = 0 if and only if b belongs to the image of F (A) →
F (B).

3. If B is a complex, i.e. A2 ⊂ I, then there exist natural transitive actions of
the abelian group F (B[−1]) on the nonempty fibres of F (I)→ F (A).

Here natural means in particular that commutes with natural transformation of func-
tors.

Proof. [1] There exists an isomorphism of dg-algebras

A× I−→A×B A; (a, t) �→ (a, a + t)
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and then there exists a natural surjective map

ϑF : F (A)× F (I) = F (A× I)→ F (A)×F (B) F (A)

The commutativity of the diagram

A× I × I −→ A× I� �
A× I −→ A

,

(a, t, s) �→ (a, t + s)� �
(a + t, s) �→ (a + t + s)

implies in particular that the composition of ϑF with the projection in the second
factor give a natural transitive action of the abelian group F (I) on the fibres of the
map F (A)→ F (B).

[2] We introduce the mapping cone of ι as the dg-algebra C = A⊕I[1] with the prod-
uct (a, m)(b, n) = (ab, 0) (note that, as a graded algebra, C is the trivial extension of
A by I[1]) and differential

dC =
(

dA ι
0 dI[1]

)
: A⊕ I[1]→ A[1]⊕ I[2]

We left as exercise the easy verification that C ∈ NA, the inclusion A→ C and the
projections C → I[1], C → B are morphisms in NA.
The kernel of C → B is isomorphic to I ⊕ I[1] with differential(

dI IdI[1]

0 dI[1]

)
.

Therefore 0−→I⊕I[1]−→C−→B−→0 is an acyclic small extension and then F (C) =
F (B).
On the other hand A = C ×I[1] 0 and then the map

F (A)→ F (C)×F (I[1]) 0

is surjective. It is sufficient to define ob as the composition of the inverse of F (C)→
F (B) with F (C)→ F (I[1]).

3) The derived inverse mapping cone is the dg-algebra D = A⊕B[−1] with product
(x, m)(x, n) = (xy, 0) and differential

dD =
(

dA 0
α dB[−1]

)
: A⊕B[−1]→ A[1]⊕B

Here the projection D → A and the inclusions inclusion I → D, B[−1] → D are
morphisms in NA.
Since 0−→B[−1]−→D−→A−→0 is a small extension, by Item 1, there exist natural
actions of F (B[−1]) on the nonempty fibres of F (D)→ F (A). The quotient of I → D
is the acyclic complex B ⊕ B[−1], and then, according to 2b of V.59, F (I)→ F (D)
is an isomorphism.

Exercise V.70. Prove that the stabilizers of the actions described in Theorem V.69
are vector subspaces. �
Given two integers p ≤ q we denote by NAq

p the full subcategory of NA whose
objects are algebras A = ⊕Ai such that Ai �= 0 only if p ≤ i ≤ q.

Theorem V.71. Let θ : F → G be a morphism of deformation functors. Assume
that θ : TF [1]i → TG[1]i is surjective for p−1 ≤ i ≤ q and injective for p ≤ i ≤ q+1.
Then:
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1. for every surjective morphism α : A→ B in the category NAq
p−1 the morphism

(α, θ) : F (A)→ F (B)×G(B) G(A)

is surjective.
2. θ : F (A)→ G(A) is surjective for every A ∈ NAq

p−1.
3. θ : F (A)→ G(A) is a bijection for every A ∈ NAq

p.

Proof. The proof uses the natural generalization to the differential graded case
of some standard techniques in Schlessinger’s theory, cf. [13].
We first note that, according to Lemma V.68, for every complex I ∈ NAq

p ∩DG
we have that θ : F (I) → G(I) is bijective, θ : F (I[1]) → G(I[1]) is injective and
θ : F (I[−1])→ G(I[−1]) is surjective.
Moreover, since F (0) = G(0) = 0, we have F (0) ×G(0) G(A) = G(A) and then Item
2 is an immediate consequence of Item 1.
Step 1: For every small extension in NAq

p−1,

0−→I−→A
α−→B−→0

and every b ∈ F (B) we have either α−1(b) = ∅ or θ(α−1(b)) = α−1(θ(b)).
In fact we have a commutative diagram

F (A) α−→ F (B)�θ

�θ

G(A) α−→ G(B)

and compatible transitive actions of the abelian groups F (I), G(I) on the fibres of
the horizontal maps. Since F (I)→ G(I) is surjective this proves Step 1.
Step 2: Let

0−→I
ι−→A

α−→B−→0

be a small extension in NAq
p−1 and b ∈ F (B). Then b lifts to F (A) if and only if

θ(b) lifts to G(A).
The only if part is trivial, let’s prove the if part. If θ(b) lifts to G(A) then ob(θ(b)) =

0 in G(I[1]); since the obstruction maps commute with natural transformation of
functors and F (I[1])→ G(I[1]) is injective, also ob(b) = 0 in F (I[1]) and then b lifts
to F (A).
Step 3: For every surjective morphism β : A → C in the category NAq

p−1, the
morphism

(α, θ) : F (A)→ F (C)×G(C) G(A)

is surjective.
Let J be the kernel of β and consider the sequence of homogeneous differential

ideals J = J0 ⊃ J1 = AJ0 ⊃ J2 = AJ1 · · · . Since A is nilpotent we have Jn �= 0
and Jn+1 = 0 for some n ≥ 0. Denoting by I = Jn and B = A/I we have a small
extension

0−→I−→A
α−→B−→0

By induction on dimK A we can assume that the natural morphism F (B)→ F (C)×G(C)

G(B) is surjective and therefore it is sufficient to prove that F (A)→ F (B)×G(B)G(A)
is surjective.
Let ã ∈ G(A) be fixed element and let b ∈ F (B) such that θ(b) = α(ã). By Step 2
α−1(b) is not empty and then by Step 1 ã ∈ θ(F (A)).
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Step 4: For every surjective morphism f : A→ B in the category NAq
p and every

a ∈ F (A) we define

SF (a, f) = {ξ ∈ F (A×B A) | ξ �→ (a, a) ∈ F (A)×F (B) F (A) ⊂ F (A)× F (A)}.
By definition, if f is a small extension and I = ker f then SF (a, f) is naturally
isomorphic to the stabilizer of a under the action of F (I) on the fibre f−1(f(a)). It
is also clear that:

1. θ(SF (a, f)) ⊂ SG(θ(a), f).
2. If α : B → C is a surjective morphism if NA, then SF (a, f) = h−1(SF (a, αf)),

where h : F (A×B A)→ F (A×C A) is induced by the natural inclusions A×B

A ⊂ A×C A.

Step 5: For every surjective morphism f : A→ B in NAq
p and every a ∈ F (A) the

map θ : SF (a, f)→ SG(θ(a), f) is surjective.
This is trivially true if B = 0, we prove the general assertion by induction on

dimK B. Let

0−→I−→B
α−→C−→0

be a small extension with I �= 0, set g = αf and denote by h : A ×C A → I the
surjective morphism in NAq

p defined by h(a1, a2) = f(a1)− f(a2); we have an exact
sequence

0−→A×B A
ι−→A×C A

h−→I−→0.

According to 2a of V.59 the maps

F (A×B A)→ F (A×C A) ∩ h−1(0); SF (a, f)→ SF (a, g) ∩ h−1(0)

are surjective.
Let ξ̃ ∈ SG(θ(a), f) and let η ∈ SF (a, g) such that θ(η) = ι(ξ̃). Since F (I) = G(I)

we have h(η) = 0 and then η lifts to some ξ1 ∈ SF (a, f). According to Theorem V.69
there exist surjective maps commuting with θ

F (A×B A)× F (I[−1])
C−→F (A×B A)×F (A×CA) F (A×B A)

G(A×B A)×G(I[−1])
C−→G(A×B A)×G(A×CA) G(A×B A)

Since F (I[−1])→ G(I[−1]) is surjective there exists v ∈ F (I[−1]) such that Q(θ(ξ1), θ(v)) =
(θ(ξ1), ξ̃); defining ξ ∈ F (A ×B A) by the formula Q(ξ1, v) = (ξ1, ξ) we get θ(ξ) = ξ̃
and then ξ ∈ SF (a, f).
Step 6: For every A ∈ NAq

p the map θ : F (A)→ G(A) is injective.
According to Lemma V.68 this is true if A2 = 0; if A2 �= 0 we can suppose by

induction that there exists a small extension

0−→I
ι−→A

α−→B−→0

with I �= 0 and θ : F (B)→ G(B) injective.
Let a1, a2 ∈ F (A) be two elements such that θ(a1) = θ(a2); by assumption f(a1) =

f(a2) and then there exists t ∈ F (I) such that ϑF (a1, t) = (a1, a2). Since ϑ is a
natural transformation ϑG(θ(a1), θ(t)) = (θ(a1), θ(a2)) and then θ(t) ∈ SG(θ(a1), α).
By Step 5 there exists s ∈ SF (a1, α) such that θ(s) = θ(t) and by injectivity of
θ : F (I)→ G(I) we get s = t and then a1 = a2.

As an immediate consequence we have:

Corollary V.72. A morphism of deformation functors θ : F → G is an isomor-
phism if and only if it is a quasiisomorphism.
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Proof of Theorem V.51. We apply Theorem V.71 to the morphism of defor-
mation functors θ = Defφ : DefL → DefN .
According to Theorem V.66, the first item of V.51 is exactly the first item of V.71
for p = 1, q = 0, while the second item of V.51 is exactly the third item of V.71 for
p = q = 0.

9. Historical survey, V

The material Sections 1, 2 and 3 is standard and well exposed in the literature
about Lie algebras; in Sections 4, 5 and 6 we follows the approach of [52], while the
material of Sections 7 and 8 comes from [53].

Some remarks on the introduction of this Chapter:

A) Given a deformation problem, in general it is not an easy task to find a fac-
torization as in the introduction and in some cases it is still unknown.

B) Even in the simplest examples, the governing DGLA is only defined up to (non
canonical) quasiisomorphism and then the Theorem V.51 is a necessary background
for the whole theory.
For example, there are very good reasons to consider, for the study of deformations
of a compact complex manifold M , the DGLA L = ⊕Li, where Li is the completion
of Γ(M,A0,i(TM )) is a suitable Sobolev’s norm. According to elliptic regularity the
inclusion KS(M) ⊂ L is a quasiisomorphism of DGLA.
In general a correct procedure gives, for every deformation problem P with associated
deformation functor DefP , a connected subcategory P ⊂ DGLA with the following
properties:

1. If L is an object of P then DefL = DefP .
2. Every morphism in P is a quasiisomorphism of DGLA.
3. If MorP(L, N) �= ∅ then the induced isomorphism Defα : DefL → DefN is

independent from the choice of α ∈ MorP(L, N).

C) It may happen that two people, say Circino and Olibri, starting from the same
deformation problem, get two non-quasiisomorphic DGLA governing the problem.
This is possible because the DGLA governs an extended (or derived) deformation
problem. If Circino and Olibri have in mind two different extensions of the problem
then they get different DGLA.
D) Although the interpretation of deformation problems in terms of solutions of
Maurer-Cartan equation is very useful on its own, in many situation it is unavoid-
able to recognize that the category of DGLA is too rigid for a “good” theory. The
appropriate way of extending this category will be the introduction of L∞-algebras;
these new objects will be described in Chapter IX.
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CHAPTER VI

Kähler manifolds

This chapter provides a basic introduction to Kähler manifolds. We first study
the local theory, following essentially Weil’s book [80] and then, assuming harmonic
and elliptic theory, we give a proof of the ∂∂-lemma which is presented both in the
classical version (Theorem VI.37, Item 2) and in the “homological” version (Theo-
rem VI.37, Item 1).
The material of this Chapter is widely present in the literature, with the possible
exception of the homological version of ∂∂-lemma; I only tried to simplify the pre-
sentation and some proofs. The main references are [80], [81] and [11]

1. Covectors on complex vector spaces

Given a complex vector space E of dimension n we denote by:
• E∨ = HomC(E, C) its dual.
• EC = E ⊗R C, with the structure of C-vector space induced by the scalar

multiplication a(v ⊗ b) = v ⊗ ab.
• E its complex conjugate.

The conjugate E is defined as the set of formal symbols v, v ∈ E with the vector
space structure given by

v + w = v + w, av = av.

The conjugation : E → E, v �→ v is a R-linear isomorphism.
There exists a list of natural isomorphisms (details left as exercise)

1. (EC)∨ = (E∨)C = HomR(E, C)
2. E∨ = E

∨ given by f(v) = f(v), f ∈ E∨, v ∈ E.

3. E ⊕E → EC, (v, w) �→ v⊗ 1− iv⊗ i + w⊗ 1 + iw⊗ i, being i a square root
of −1.

4. E∨ ⊕ E∨ → E∨
C

= HomR(E, C), (f, g)(v) = f(v) + g(v).

Under these isomorphisms, the image of E∨ (resp.: E
∨) inside E∨

C
is the subspace

of f such that f(iv) = if(v) (resp.: f(iv) = −if(v)). Moreover E∨ = E
⊥, E

∨ = E⊥.

For 0 ≤ p, q ≤ n we set Ap,q =
∧p E∨ ⊗ ∧q E

∨: this is called the space of (p, q)-
covectors of E. We also set Ap = ⊕a+b=pAa,b (the space of p-covectors) and A =
⊕a,bAa,b. Denote by Pa,b : A → Aa,b, Pp : A → Ap the projections.
If z1, . . . , zn is a basis of E∨ then z1, . . . , zn is a basis of E

∨ and therefore

zi1 ∧ . . . ∧ zip ∧ zj1 ∧ . . . ∧ zjq , i1 < . . . < ip, j1 < . . . < jq

is a basis of Ap,q. Since E∨
C

= E∨ ⊕ E
∨, we have

∧∗E∨
C

= A.
The complex conjugation is defined in A and gives a R-linear isomorphism : A → A.

Marco Manetti: Lectures on deformations of complex manifolds
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On the above basis, the conjugation acts as

zi1 ∧ . . . ∧ zip ∧ zj1 ∧ . . . ∧ zjq = (−1)pqzj1 ∧ . . . ∧ zjq ∧ zi1 ∧ . . . ∧ zip .

Since Aa,b = Ab,a, we have Pa,b(η) = Pb,a(η).

Definition VI.1. The operator C : A → A is defined by the formula

C =
∑
a,b

ia−bPa,b.

Note that C(u) = C(u) (i.e. C is a real operator) and C2 =
∑

p(−1)pPp.

2. The exterior algebra of a Hermitian space

Let E be a complex vector space of dimension n. A Hermitian form on E is a
R-bilinear map h : E × E → C satisfying the conditions

1. h(av, w) = ah(v, w), h(v, aw) = ah(v, w), a ∈ C, v, w ∈ E.
2. h(w, v) = h(v, w), v, w ∈ E.

Note that h(v, v) ∈ R for every v. h is called positive definite if h(v, v) > 0 for every
v �= 0.

Definition VI.2. A Hermitian space is a pair (E, h) where h is a positive definite
Hermitian form on E.

It is well known that a Hermitian form h on a finite dimensional vector space E is
positive definite if and only if it admits a unitary basis, i.e. a basis e1, . . . , en of E
such that h(ei, ej) = δij .
Every Hermitian space (E, h) induces canonical Hermitian structures on the asso-

ciated vector spaces. For example

h : E × E → C, h(v, w) = h(v, w)

and

hp :
∧pE ×∧pE → C, hp(v1 ∧ . . . ∧ vp, w1 ∧ . . . ∧ wp) = det(h(vi, wj))

are Hermitian forms. If e1, . . . , en is a unitary basis of E then e1, . . . , en is a unitary
basis for h and ei1 ∧ . . . ∧ eip , i1 < . . . < ip, is a unitary basis for hp.

Similarly, if (F, k) is another Hermitian space then we have natural Hermitian struc-
tures on E ⊗ F and HomC(E, F ) given by

hk : E ⊗ F → C, hk(v ⊗ f, w ⊗ g) = h(v, w)k(f, g)

h∨k : HomC(E, F )→ C, h∨k(f, g) =
n∑

i=1

k(f(ei), g(ei))

where ei is a unitary basis of E. It is an easy exercise (left to the reader) to prove
that h∨k is well defined and positive definite.
In particular the complex dual E∨ is a Hermitian space and the dual basis of a uni-
tary basis for h is a unitary basis for h∨.

Let e1, . . . , en be a basis of E, z1, . . . , zn ∈ E∨ its dual basis; then

h(v, w) =
∑
i,j

hijzi(v)zj(w)
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where hij = h(ei, ej). We have hji = hij and the basis is unitary if and only if
hij = δij . We then write h =

∑
ij hijzi ⊗ zj ; in doing this we also consider h as an

element of E∨ ⊗ E
∨ = (E ⊗ E)∨.

Taking the real and the imaginary part of h we have h = ρ− iω, with ρ, ω : E×E →
R. It is immediate to observe that ρ is symmetric, ω is skewsymmetric and

ρ(iv, iw) = ρ(v, w), ω(iv, iw) = ω(v, w), ρ(iv, w) = ω(v, w).

Since zi ∧ zj = zi ⊗ zj − zj ⊗ zi, we can write

ω =
i

2
(h− h) =

i

2

∑
ij

hijzi ∧ zj ∈ A1,1.

Note that ω is real, i.e. ω = ω, and the Hermitian form is positive definite if and only
if for every v �= 0, h(v, v) = ρ(v, v) = ω(v, iv) > 0. The basis e1, . . . , en is unitary if

and only if ω =
i

2

∑
i

zi ∧ zi.

Let now e1, . . . , en be a fixed unitary basis of a Hermitian space (E, h) with dual

basis z1, . . . , zn and denote uj =
i

2
zj ∧ zj ; if zj = xj + iyj then uj = xj ∧ yj and

ω∧n

n!
= u1 ∧ . . . ∧ un = x1 ∧ y1 ∧ . . . ∧ xn ∧ yn.

Since x1, y1, . . . , xn, yn is a system of coordinates on E, considered as a real oriented
vector space of dimension 2n and the quadratic form ρ is written in this coordinates

ρ(v, v) =
n∑

i=1

(xi(v)2 + yi(v)2),

we get from the above formula that ω∧n/n! ∈ ∧
R

2nHomR(E, R) is the volume element
associated to the scalar product ρ on E.
For notational simplicity, if A = {a1, . . . , ap} ⊂ {1, . . . , n} and a1 < a2 < . . . < ap,

we denote |A| = p and

zA = za1 ∧ . . . ∧ zap , zA = za1 ∧ . . . ∧ zap , uA = ua1 ∧ . . . ∧ uap .

For every decomposition of {1, . . . , n} = A ∪B ∪M ∪N into four disjoint subsets,
we denote

zA,B,M,N =
1√

2|A|+|B|
zA ∧ zB ∧ uM ∈ A|A|+|M |,|B|+|M |.

These elements give a basis of A which we call standard basis.
Note that zA,B,M,N = (−1)|A| |B|zB,A,M,N .

Definition VI.3. The C-linear operator ∗ : Ap,q → An−q,n−p is defined as

∗zA,B,M,N = sgn(A, B)i|A|+|B|zA,B,N,M ,

where sgn(A, B) = ±1 is the sign compatible with the formulas

zA,B,M,N ∧ ∗zA,B,M,N = zA,B,M,N ∧ ∗zA,B,M,N = u1 ∧ . . . ∧ un.(2)

C−1 ∗ zA,B,M,N = (−1)
(|A|+|B|)(|A|+|B|+1)

2 zA,B,N,M = (−1)
(p+q)(p+q+1)

2
+|M |zA,B,N,M .

(3)

Exercise VI.4. Verify that Definition VI.3 is well posed. �
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In particular

∗2zA,B,M,N = (−1)|A|+|B|zA,B,M,N = (−1)|A|+|B|+2|M |zA,B,M,N

and then

(C−1∗)2 = Id, ∗2 = C2 =
∑

p

(−1)pPp.

If we denote vol : C → An,n the multiplication for the “volume element” ω∧n/n!,
then vol is an isomorphism and we can consider the R-bilinear maps

( , ) : Aa,b ×Aa,b → C, (v, w) = vol−1(v ∧ ∗w) = vol−1(v ∧ ∗w).

Clearly ( , ) is C-linear on the first member and C-antilinear in the second; since

(zA,B,M,N , zA′,B′,M ′,N ′) =

 1 if A = A′, B = B′, M = M ′, N = N ′

0 otherwise

we have that ( , ) is a positive definite Hermitian form with the zA,B,M,N ’s, |A|+|M | =
a, |B| + |M | = b, a unitary basis; since ∗ sends unitary basis into unitary basis we
also get that ∗ : Aa,b → An−b,n−a is an isometry.

Lemma VI.5. The Hermitian form ( , ) is the Hermitian form associated to the
Hermitian space (E, h/2). In particular ( , ) and ∗ are independent from the choice
of the unitary basis e1, . . . , en.

Proof. The basis
√

2e1, . . . ,
√

2en is a unitary basis for h/2 and then the stan-
dard basis is a unitary basis for the associated Hermitian structures on A.
From the formula (v, w)ω∧n = n!(v ∧ ∗w) and from the fact that the wedge product
is nondegenerate follows that ∗ depends only by ω and ( , ).

Consider now, for every j = 1, . . . , n, the linear operators

Lj : Ap,q → Ap+1,q+1, Lj(η) = η ∧ uj ,

Λj : Ap,q → Ap−1,q−1, Λj(η) = η 6
(

2
i
ej ∧ ej

)
,

where 6 denotes the contraction on the right. More concretely, in the standard basis

LizA,B,M,N =

 zA,B,M∪{i},N−{i} if i ∈ N

0 otherwise

ΛizA,B,M,N =

 zA,B,M−{i},N∪{i} if i ∈M

0 otherwise

It is therefore immediate to observe that Li∗ = ∗Λi and ∗Li = Λi∗. Setting L =∑
i Li, Λ =

∑
i Λi we have therefore

L(η) = η ∧ ω, Λ = ∗−1L∗ = ∗L ∗−1 .

Lemma VI.6. The operators L and Λ do not depend from the choice of the unitary
basis.

Proof. ω and ∗ do not depend.
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Proposition VI.7. The following commuting relations hold:

[L, C] = 0, [Λ, C] = 0, [∗, C] = 0, [Λ, L] =
2n∑

p=0

(n− p)Pp.

Proof. Only the last is nontrivial, we have:

LzA,B,M,N =
∑
i∈N

zA,B,M∪{i},N−{i}, ΛzA,B,M,N =
∑
i∈M

zA,B,M−{i},N∪{i},

ΛLzA,B,M,N =
∑
i∈N

zA,B,M,N +
∑
j∈M

∑
i∈N

zA,B,M∪{i}−{j},N∪{j}−{i},

LΛzA,B,M,N =
∑
i∈M

zA,B,M,N +
∑
j∈M

∑
i∈N

zA,B,M∪{i}−{j},N∪{j}−{i}.

Therefore we get

(ΛL− LΛ)zA,B,M,N = (|N | − |M |)zA,B,M,N = (n− |A| − |B| − 2|M |)zA,B,M,N .

and then

[Λ, L] =
2n∑

p=0

(n− p)Pp.

3. The Lefschetz decomposition

The aim of this section is to study the structure of
∧∗,∗ E∨ as a module over the

algebra Φ generated by the linear operators C−1∗, L,Λ.
In the notation of the previous section, it is immediate to see that there exists a direct
sum decomposition of Φ-modules

∧∗,∗ E∨ =
⊕

VA,B, where VA,B is the subspace
generated by the 2n−|A|−|B| elements zA,B,M,N , being A, B fixed.
It is also clear that every VA,B is isomorphic to one of the Φ-modules V (h, τ), h ∈ N,
τ = ±1, defined in the following way:

1. V (h, τ) is the C-vector space with basis uM , M ⊂ {1, . . . , h}.
2. The linear operators L,Λ and C−1∗ act on V (h, τ) as

LuM =
∑
i�∈M

uM∪{i}, ΛuM =
∑
i∈M

uM−{i}, C−1 ∗ uM = τuMc ,

where M c = {1, . . . , h} −M denotes the complement of M .
We have a direct sum decomposition

V (h, τ) =
⊕

α≡h (mod 2)

Vα,

where Vα is the subspace generated by the uM with |M c| − |M | = α. An element of
Vα is called homogeneous of weight α. Set Pα : V (h, τ)→ Vα the projection.
Note that L : Vα → Vα−2, Λ: Vα → Vα+2 and C−1∗ : Vα → V−α.
We have already seen that

[Λ, L] =
∑
α∈Z

αPα, LC−1∗ = C−1 ∗ Λ, C−1 ∗ L = ΛC−1 ∗ .
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A simple combinatorial argument shows that for every r ≥ 0,

LruM = r!
∑

M⊂N,|N |=|M |+r

uN .

Lemma VI.8. For every r ≥ 1 we have

[Λ, Lr] =
∑
α

r(α− r + 1)Lr−1Pα.

Proof. This has already done for r = 1, we prove the general statement for
induction on r. We have

[Λ, Lr+1] = [Λ, Lr]L + Lr[Λ, L] =
∑
α

r(α− r + 1)Lr−1PαL +
∑
α

αPα.

Since PαL = LPα+2 we have

[Λ, Lr+1] =
∑
α

r(α− r + 1)LrPα+2 +
∑
α

αPα =
∑
α

(r(α− r − 1) + α)LrPα.

Definition VI.9. A homogeneous vector v ∈ Vα is called primitive if Λv = 0.

Proposition VI.10. Let v ∈ Vα be a primitive element, then:
1. Lqv = 0 for every q ≥ max(α + 1, 0). In particular if α < 0 then v = L0v = 0.
2. If α ≥ 0, then for every p > q ≥ 0

Λp−qLpv =
p∏

r=q+1

r(α− r + 1)Lqv;

in particular ΛαLαv = α!2v.

Proof. We first note that for s, r ≥ 1

ΛsLrv = Λs−1[Λ, Lr]v = r(α− r + 1)Λs−1Lr−1v.

and then for every p > q ≥ 0

Λp−qLpv =
p∏

r=q+1

r(α− r + 1)Lqv.

If p > q > α then r(α − r + 1) �= 0 for every r > q and then Lqv = 0 if and only if
Λp−qLpv = 0: taking p >> 0 we get the required vanishing.

Lemma VI.11. Let α ≥ 0, m = (h − α)/2 and v =
∑

|M |=m aMuM ∈ Vα, aM ∈ C.
If v is primitive, then for every M

aM = (−1)m
∑

N⊂Mc,|N |=m

aN .

Proof. For m = 0 the above equality becomes a∅ = a∅ and therefore we can
assume m > 0. Let M ⊂ {1, . . . , h} be a fixed subset of cardinality m, since

0 = Λv =
∑

|H|=m

aH

∑
i∈H

uH−{i} =
∑

|N |=m−1

uN

∑
i�∈N

aN∪{i}

we get for every N ⊂ {1, . . . , h} of cardinality m− 1 the equality

RN :
∑

i∈M−N

aN∪{i} = −
∑

i�∈M∪N

aN∪{i}.
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For every 0 ≤ r ≤ m denote by

Sr =
∑

|H|=m,|H∩M |=r

aH .

Fixing an integer 1 ≤ r ≤ m and taking the sum of the equalities RN , for all N such
that |N ∩M | = r − 1 we get

rSr = −(m− r + 1)Sr−1

and then

aM = Sm = −Sm−1

m
=

2Sm−2

m(m− 1)
= . . . = (−1)m m!

m!
S0 = (−1)m

∑
N⊂Mc,|N |=m

aN .

Lemma VI.12. If v ∈ Vα, α ≥ 0, is primitive, then for every 0 ≤ r ≤ α

C−1 ∗ Lrv = τ(−1)m r!
(α− r)!

Lα−rv,

where m = (h− α)/2.

Proof. Consider first the case r = 0; writing v =
∑

aNuN with |N | = m,
aN ∈ C, we have:

Lαv

α!
=

∑
|N |=m

aN

∑
N⊂M

|M |=m+α

uM =
∑

|N |=m

aN

∑
M⊂Nc

|M |=m

uMc =
∑

|M |=m

uMc

∑
N⊂Mc

|N |=m

aN .

C−1 ∗ v = τ
∑

|M |=m

aMuMc .

The equality C−1 ∗ v = τ(α!)−1Lαv follows immediately from Lemma VI.11. If r ≥ 1
then

C−1 ∗ Lrv = ΛrC−1 ∗ v =
τ(−1)m

α!
ΛrLαv.

Using the formula of VI.10 we get

C−1 ∗ Lrv =
τ(−1)m

α!

α∏
j=α−r+1

j(α− j + 1)Lα−rv = τ(−1)m r!
(α− r)!

Lα−rv.

Theorem VI.13. (Lefschetz decomposition)
1. Every v ∈ Vα can be written in a unique way as

v =
∑

r≥max(−α,0)

Lrvr

with every vr ∈ Vα+2r primitive.
2. For a fixed q ≥ h there exist noncommutative polynomials Gq

α,r(Λ, L) with
rational coefficients such that vr = Gq

α,r(Λ, L)v for every v ∈ Vα.

Proof. Assume first α ≥ 0, we prove the existence of the decomposition v =∑
r≥0 Lrvr as above by induction on the minimum q such that Λqv = 0. If q = 1 then

v is already primitive. If Λq+1v = 0 then w = Λqv ∈ Vα+2q is primitive and then,
setting γ =

∏q
r=1 r(α + 2q − r + 1), we have γ > 0 and

Λq

(
v − Lq w

γ

)
= w − ΛqLq w

γ
= 0.
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This prove the existence when α ≥ 0. If α < 0 then C−1 ∗ v ∈ V−α and we can write:

C−1 ∗ v =
∑
r≥0

Lrvr, v =
∑
r≥0

C−1 ∗ Lrvr, vr ∈ V−α+2r.

According to Lemma VI.12

v =
∑
r≥0

γrL
−α+rvr =

∑
r≥−α

γr+αLrvr

for suitable rational coefficients γr.
The unicity of the decomposition and item 2 are proved at the same time. If

v =
q∑

r=max(−α,0)

Lrvr

is a decomposition with every vr ∈ Vα+2r primitive, then Lα+qv = Lα+2qvq and

vq =
1

(α + 2q)!2
Λα+2qLα+2qvq =

1
(α + 2q)!2

Λα+2qLα+qv.

Therefore vq is uniquely determined by v and we can take Gq
α,q = (α+2q)!−2Λα+2qLα+q.

Since v − Lqvq = (1 − LqGq
α,q)v =

∑q−1
r=max(−α,0) Lrvr we can proceed by decreasing

induction on q.

Corollary VI.14. v ∈ Vα, α ≥ 0, is primitive if and only if Lα+1v = 0.

Proof. Let v =
∑

r≥0 Lrvr be the Lefschetz decomposition of v, then
∑

r>0 Lα+r+1vr

is the Lefschetz decomposition of Lα+1v. Therefore Lα+1v = 0 if and only if
v = v0.

It is clear that Theorem VI.13 and Corollary VI.14 hold also for every finite direct
sum of Φ-modules of type V (h, τ).
For later use we reinterpret Lemma VI.12 for the Φ-module A: we have

A =
⊕
A,B

VA,B, VA,B = V
(
n− |A| − |B|, (−1)

(|A|+|B|)(|A|+|B|+1)
2

)
where the sum is taken over all pairs of disjoint subsets A, B of {1, . . . , n}. The space
Aα =

⊕
(VA,B)α is precisely the space

⊕
aAa,n−α−a of (n − α)-covectors. We then

get the following

Lemma VI.15. If v ∈ A is a primitive p-covector, p ≤ n, then

C−1 ∗ Lrv =


(−1)

p(p+1)
2

r!
(n− p− r)!

Ln−p−rv if r ≤ n− p

0 if r > n− p

4. Kähler identities

Let M be a complex manifold of dimension n and denote by A∗,∗ the sheaf of
differential forms on M . By definition Aa,b is the sheaf of sections of the complex
vector bundle

∧a T∨
M ⊗

∧b TM
∨. The operators Pa,b, Pp and C, defined on the fibres

of the above bundles, extend in the obvious way to operators in the sheaf A∗,∗.
If d : A∗,∗ → A∗,∗ is the De Rham differential we denote:

dC = C−1dC, ∂ =
d + idC

2
, ∂ =

d− idC

2
,

d = CdCC−1, d = ∂ + ∂, dC = i(∂ − ∂).
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If η is a (p, q)-form then we can write dη = η′ + η′′ with η′ ∈ Ap+1,q, η′′ ∈ Ap,q+1 and
then

dC(η) = C−1d(ip−qη) =
ip−q

ip−q+1
η′ +

ip−q

ip−q−1
η′′ = i−1η′ + iη′′, ∂η = η′, ∂η = η′′.

Since 0 = d2 = ∂2 + ∂∂ + ∂∂ + ∂
2 we get 0 = ∂2 = ∂∂ + ∂∂ = ∂

2 and then (dC)2 = 0,
ddC = 2i∂∂ = −dCd.
Using the structure of graded Lie algebra on the space of C-linear operators of the

sheaf of graded algebras A∗,∗ (with the total degree v = a + b if v ∈ Aa,b), the above
relation can be rewritten as

[d, d] = dd + dd = 2d2 = 0, [dC , dC ] = [d, dC ] = [∂, ∂] = [∂, ∂] = [∂, ∂] = 0.

Note finally that d and C are real operators and then also dC is; moreover ∂η = ∂η.
A Hermitian metric on M is a positive definite Hermitian form h on the tan-

gent vector bundle TM . If z1, . . . , zn are local holomorphic coordinates then hij =

h

(
∂

∂zi
,

∂

∂zj

)
is a smooth function and the matrix (hij) is Hermitian and positive

definite. The local expression of h is then h =
∑

ij hijdzi ⊗ dzj and the differential
form

ω =
i

2

∑
i,j

hijdzi ∧ dzj ∈ Γ(M,A1,1)

is globally definite and gives the imaginary part of −h; ω is called the (real, (1, 1))
associated form to h.

The choice of a Hermitian metric on M induces, for every open subset U ⊂ M ,
linear operators

L : Γ(U,Aa,b)→ Γ(U,Aa+1,b+1), Lv = v ∧ ω,

∗ : Γ(U,Aa,b)→ Γ(U,An−b,n−a),

Λ: Γ(U,Aa,b)→ Γ(U,Aa−1,b−1), Λ = ∗−1L∗ = (C−1∗)−1LC−1 ∗ .

The commuting relations between them

[L, C] = [Λ, C] = [∗, C] = [L, ∗2] = 0, [Λ, Lr] =
∑

p

r(n− p− r + 1)Pp

are still valid.
A differential form v is primitive if Λv = 0; the existence of the polynomials Gn

n−p,r(Λ, L)
(cf. Theorem VI.13) gives the existence and unicity of Lefschetz decomposition for
every differential p-form

v =
∑

r≥max(p−n,0)

Lrvr, Λvr = 0.

We set:

δ = − ∗ d∗, δC = − ∗ dC∗ = C−1δC,

∂∗ = − ∗ ∂∗ =
δ − iδC

2
, ∂

∗ = − ∗ ∂∗ =
δ + iδC

2
.

Definition VI.16. The Hermitian metric h is called a Kähler metric if dω = 0.

Almost all the good properties of Kähler metrics come from the following
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Theorem VI.17. (Kähler identities) Let h be a Kähler metric on a complex mani-
fold, then:

[L, d] = 0 [L, dC ] = 0 [L, ∂] = 0 [L, ∂] = 0

[Λ, d] = −δC [Λ, dC ] = δ [Λ, ∂] = i∂
∗ [Λ, ∂] = −i∂∗

[L, δ] = dC [L, δC ] = −d [L, ∂∗] = i∂ [L, ∂
∗] = −i∂

[Λ, δ] = 0 [Λ, δC ] = 0 [Λ, ∂∗] = 0 [Λ, ∂
∗] = 0

Proof. It is sufficient to prove that [L, d] = 0 and [Λ, d] = −δC . In fact, since
Λ = ∗−1L∗ = ∗L∗−1 we have [Λ, δ] + ∗[L, d]∗ = 0 and [L, δ] + ∗[Λ, d]∗ = 0: this will
prove the first column. The second column follows from the first using the fact that
C commutes with L and Λ. The last two columns are linear combinations of the first
two.
If v is a p-form then, since dω = 0,

[L, d]v = dv ∧ ω − d(v ∧ ω) = −(−1)pv ∧ dω = 0.

According to the Lefschetz decomposition it is sufficient to prove that [Λ, d]Lru =
−δCLru for every r ≥ 0 and every primitive p-form u (p ≤ n). We first note that,
being u primitive, Ln−p+1u = 0 and then Ln−p+1du = dLn−p+1u = 0. This implies
that the Lefschetz decomposition of du is du = u0 + Lu1.
Setting α = n− p, we have u ∈ Vα, u0 ∈ Vα−1, u1 ∈ Vα+1:

[Λ, d]Lru = ΛLrdu− dΛLru = ΛLru0 + ΛLr+1u1 − r(α− r + 1)dLr−1u =

= r(α− r)Lr−1u0 + (r + 1)(α− r + 1)Lru1 − r(α− r + 1)Lr−1u0 − r(α− r + 1)Lru1 =

= −rLr−1u0 + (α− r + 1)Lru1.

On the other hand we have by VI.15

−δCLru = C−1 ∗ d ∗ CLru = C−1 ∗ dC2C−1 ∗ Lru

= C−1 ∗ dC2(−1)p(p+1)/2 r!
(α− r)!

Lα−ru

and then

−δCLru = (−1)p(p−1)/2 r!
(α− r)!

C−1 ∗ Lα−r(u0 + Lu1).

Again by VI.15,

C−1 ∗ Lα−ru0 = (−1)(p+1)(p+2)/2 (α− r)!
(r − 1)!

Lr−1u0,

C−1 ∗ Lα−r+1u1 = (−1)(p−1)p/2 (α− r + 1)!
r!

Lru1.

Putting all the terms together we obtain the result.

Corollary VI.18. If ω is the associated form of a Kähler metric h then dω∧p =
δω∧p = 0 for every p ≥ 0 .
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Proof. The equality dω∧p = 0 follows immediately from the Leibnitz rule. Since
ω∧p is a (p, p) form, we have Cω∧p = ω∧p and then also dCω∧p = 0.
We prove δω∧p = 0 by induction on p, being the result trivial when p = 0. If p > 0
we have

0 = dCω∧p−1 = Lδω∧p−1 − δLω∧p−1 = −δω∧p.

The gang of Laplacians is composed by:
1. ∆d = ∆ = [d, δ] = dδ + δd.
2. ∆dC = ∆C = C−1∆C = [dC , δC ] = dCδC + δCdC .
3. ∆∂ = � = [∂, ∂∗] = ∂∂∗ + ∂∗∂.
4. ∆∂ = � = [∂, ∂

∗] = ∂ ∂
∗ + ∂

∗
∂.

A straightforward computation shows that ∆ + ∆C = 2�+ 2�.

Corollary VI.19. In the above notation, if h is a Kähler metric then:

[d, δC ] = [dC , δ] = [∂, ∂
∗] = [∂, ∂∗] = 0,

1
2
∆ =

1
2
∆C = � = �.

In particular ∆ is bihomogeneous of degree (0, 0).

Proof. According to Theorem VI.17 and the Jacobi identity we have

[d, δC ] = [d, [d, Λ]] =
1
2
[[d, d],Λ] = 0.

The proof of [dC , δ] = [∂, ∂
∗] = [∂, ∂∗] = 0 is similar and left as exercise. For the

equalities among Laplacians it is sufficient to shows that ∆ = ∆C and � = �.
According to the Kähler identities

∆ = [d, δ] = [d, [Λ, dC ]] = [[d, Λ], dC ] + [Λ, [d, dC ]].

Since [d, dC ] = ddC + dCd = 0 we have

∆ = [d, δ] = [[d, Λ], dC ] = [δC , dC ] = ∆C .

The proof of � = � is similar and it is left to the reader.

Corollary VI.20. In the above notation, if h is a Kähler metric, then ∆ commutes
with all the operators Pa,b, ∗, d, L, C, Λ, dC , ∂, ∂, δ, δC , ∂∗, ∂

∗.

Proof. Since ∆ is of type (0, 0) it is clear that commutes with the projections
Pa,b. Recalling that δ = − ∗ d∗ we get d = ∗δ∗ and then

∗∆ = ∗dδ + ∗δd = − ∗ d ∗ d ∗+ ∗ δ ∗ δ∗ = δd ∗+dδ∗ = ∆ ∗ .

[L,∆] = [L, [d, δ]] = [[L, d], δ] + [[L, δ], d] = [dC , d] = 0.

[d, ∆] = [d, [d, δ]] =
1
2
[[d, d], δ] = 0.

Now it is sufficient to observe that all the operators in the statement belong to the
C-algebra generated by Pa,b, ∗, d and L.

Definition VI.21. A p-form v is called harmonic if ∆v = 0.

Corollary VI.22. Let h be a Kähler metric and let v =
∑

r Lrvr be the Lefschetz
decomposition of a p-form.
Then v is harmonic if and only if vr is harmonic for every r.



102 VI. KÄHLER MANIFOLDS

Proof. Since ∆ commutes with L, if ∆vr = 0 for every r then also ∆v = 0.
Conversely, since vr = Gn

p,r(Λ, L)v for suitable noncommutative polynomials with
rational coefficients Gn

p,r, and ∆ commutes with Λ, L then v harmonic implies ∆vr = 0
for every r.

Corollary VI.23. In the above notation, if h is a Kähler metric and v is a closed
primitive (p, q)-form then v is harmonic.

Note that if either p = 0 or q = 0 then v is always primitive.

Proof. It is sufficient to prove that δv = 0, we have

δv = CδCC−1v = iq−pCδCv = iq−pC[d, Λ]v = 0.

5. Kähler metrics on compact manifolds

In this section we assume M compact complex manifold of dimension n. We denote
by La,b = Γ(M,Aa,b), Lp =

⊕
a+b=p La,b, L =

⊕
p Lp.

Every Hermitian metric h on M induces a structure of pre-Hilbert space on La,b for
every a, b (and then also on L) given by:

(φ, ψ) =
∫

M
φ ∧ ∗ψ.

We have already seen that the operator ∗ : La,b → Ln−a,n−b is an isometry commuting
with the complex conjugation and then we also have:

(φ, ψ) =
∫

M
φ ∧ ∗ψ =

∫
M

φ ∧ ∗ψ = (−1)a+b

∫
M
∗φ ∧ ψ =

∫
M

ψ ∧ ∗φ = (ψ, φ).

Proposition VI.24. With respect to the above pre-Hilbert structures we have the
following pairs (written in columns) of formally adjoint operator:

operator d dC ∂ ∂ L

formal adjoint δ δC ∂∗ ∂
∗ Λ

In particular, all the four Laplacians are formally self-adjoint operators.

Proof. We show here only that δ is the formal adjoint of d. The proof of the
remaining assertions is essentially the same and it is left as exercise.
Let φ be a p-form and ψ a p + 1-form. By Stokes theorem

0 =
∫

M
d(φ ∧ ∗ψ) =

∫
M

dφ ∧ ∗ψ + (−1)p

∫
M

φ ∧ d∗ψ.

Since d∗ψ = d ∗ ψ and d ∗ ψ = (−1)2n−p ∗2 d ∗ ψ = −(−1)p ∗ δψ we get

0 =
∫

M
dφ ∧ ∗ψ −

∫
M

φ ∧ ∗δψ = (dφ, ψ)− (φ, δψ).

Let D be any of the operator d, dC , ∂, ∂; denote D∗ its formal adjoint and by ∆D =
DD∗ + D∗D its Laplacian (i.e. ∆d = ∆, ∆∂ = � etc...). The space of D-harmonic
p-forms is denoted by Hp

D = ker ∆D ∩ Lp.

Lemma VI.25. We have ker ∆D = ker D ∩ ker D∗.
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Proof. The inclusion ⊃ is immediate from the definitions of the Laplacian. The
inclusion ⊂ comes from

(∆Dφ, φ) = (DD∗φ, φ) + (D∗Dφ, φ) = (D∗φ, D∗φ) + (Dφ, Dφ) = ‖D∗φ‖2 + ‖Dφ‖2.

The theory of elliptic self-adjoint operators on compact manifolds gives:

Theorem VI.26. In the notation above the spaces of D-harmonic forms Hp
D are

finite dimensional and there exist orthogonal decompositions

Lp = Hp
D

⊥⊕
Im ∆D.

Proof. See e.g. [78].

Corollary VI.27. The natural projection maps

Hp
d → Hp(M, C), Hp,q

∂
→ Hq

∂
(M,Ωp)

are isomorphism.

Proof. We first note that, according to Lemma VI.25, every harmonic form is
closed and then the above projection maps makes sense. It is evident that Im ∆ ⊂
Im d + Im δ. On the other hand, since d, δ are formally adjoint and d2 = δ2 = 0 we
have ker d ⊥ Im δ, ker δ ⊥ Im d: this implies that Im d, Im δ and Hp

d are pairwise
orthogonal. Therefore Im ∆ = Im d ⊕ Im δ and ker d = Hp

d ⊕ Im d; the conclusion
follows by De Rham theorem.
The isomorphism Hp,q

∂
→ Hq

∂
(M, Ωp) is proved in the same way (with Dolbeault’s

theorem instead of De Rham) and it is left as exercise.

Corollary VI.28. The map ∆D : Im ∆D → Im ∆D is bijective.

Proof. Trivial consequence of Theorem VI.26.

We define the harmonic projection HD : Lp → Hp
D as the orthogonal projection and

the Green operator GD : Lp → Im ∆D as the composition of

GD : Lp Id−HD�� Im ∆D

∆−1
D �� Im ∆D.

Note that ∆DGD = GD∆D = Id−HD and GDHD = HDGD = 0.

Lemma VI.29. If K is an operator commuting with ∆D then K commutes with GD.

Proof. Exercise (Hint: K preserves image and kernel of ∆D).

If h is a Kähler metric, then the equality ∆ = 2� implies that

Hd = HdC = H∂ = H∂ , Gd = GdC =
1
2
G∂ =

1
2
G∂ .

In particular, according to Lemma VI.29 and Corollary VI.20, Gd = GdC commutes
with d, dC .

Corollary VI.30. If h is a Kähler metric on a compact manifold then: Every
holomorphic p-form on M is harmonic.

Proof. According to Corollary VI.27 the inclusion Hp,0

∂
⊂ Γ(M,Ωp) is an iso-

morphism and then if η is a holomorphic p-form we have ∆(η) = 2�(η) = 0.
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Exercise VI.31. Let v �= 0 be a primitive (p, q)-form on a compact manifold M
with Kähler form ω. Prove that∫

M
v ∧ v ∧ ω∧n−p−q �= 0.

�

6. Compact Kähler manifolds

In this section we will prove that certain good properties concerning the topology and
the complex structure of compact complex manifolds are true whenever we assume
the existence of a Kähler metric. This motivates the following definition:

Definition VI.32. A complex manifold M s called a Kähler manifolds if there
exists a Kähler metric on M .

We note that, while every complex manifold admits a Hermitian metric (this is
an easy application of partitions of unity, cf. [37, Thm. 3.14]), not every complex
manifold is Kählerian. We recall the following

Theorem VI.33. 1. Cn, Pn and the complex tori are Kähler manifolds.
2. If M is a Kähler manifold and N ⊂ M is a regular submanifold then also N

is a Kähler manifolds.

For a proof of Theorem VI.33 we refer to [26].

From now on M is a fixed compact Kähler manifold on dimension n.
For every m ≤ 2n we denote by Hm(M, C) = Hm(M, R) ⊗R C the De Rham coho-
mology C-vector spaces. We note that a differential m-form η is d-closed if and only
if its conjugate η is. In particular the complex conjugation induce an isomorphism
of vector spaces Hm(M, C) = Hm(M, C).
If p + q = m we denote by F p,q ⊂ Hm(M, C) the subspace of cohomology classes

represented by d-closed form of type (p, q) (note that a (p, q)-form η is d-closed if and
only if it is ∂η = ∂η = 0). It is clear that F p,q = F q,p.

Theorem VI.34 (Hodge decomposition). In the notation above we have

Hm(M, C) =
⊕

p+q=m
F p,q

and the natural morphisms F p,q → Hp,q
∂ (M), F p,q → Hp,q

∂
(M) are isomorphisms.

Proof. Take a Kähler metric on M and use it to define the four Laplacians,
the harmonic projectors and the Green operators. According to Corollary VI.19 the
Laplacian ∆ is bihomogeneous of bidegree (0, 0) and we have

ker ∆ ∩ Lq =
⊕

a+b=q

ker ∆ ∩ La,b.

The isomorphism ker ∆∩Lq → Hq(M, C) induces injective maps ker ∆∩La,b → F a,b;
this maps are also surjective because every closed form α is cohomologically equivalent
to its harmonic projection Hα and H is bihomogeneous of bidegree (0, 0).
The last equalities follow from the isomorphisms

ker ∆ ∩ La,b = ker� ∩ La,b = Ha,b
∂ (M), ker ∆ ∩ La,b = ker� ∩ La,b = Ha,b

∂
(M).

Corollary VI.35. If M is a compact Kähler manifold then:
1. bi =

∑
a+b=i h

a,b.
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2. hp,q = hq,p, in particular bi is even if i is odd.
3. hp,p > 0, in particular bi > 0 if i is even.
4. Every holomorphic p-form on M is d-closed.

(bi = dimC H i(M, C) are the Betti numbers, hp,q = dimC Hq(M,Ωp) the Hodge num-
bers.)

Proof. Items 1 and 2 are immediate consequence of the Hodge decomposition.
Take a Kähler metric on M and use it to define the four Laplacians, the harmonic
projectors and the Green operators. Let ω be the associated form of the Kähler
metric on M . According to Corollary VI.18, ω∧p is harmonic and then ker�∩Lp,p =
ker ∆ ∩ Lp,p �= 0.
Finally, by Corollary VI.30 the holomorphic forms are ∆-harmonic and therefore
d-closed.

Example VI.36. The Hopf surfaces (Example I.6) have b1 = b3 = 1, b2 = 0 and
then are not Kähler.

Finally we are in a position to prove the following

Theorem VI.37. (∂∂-Lemma) Let M be a compact Kähler manifold. Then
1. There exists a linear operator σ : L→ L of bidegree (0,−1) such that

[∂, σ] = 0, [∂, σ]∂ = [∂, σ∂] = ∂.

2. Im ∂∂ = ker ∂ ∩ Im ∂ = ker ∂ ∩ Im ∂.

Proof. [1] Choose a Kähler metric and define σ = G∂∂
∗. According to VI.19,

VI.20 and VI.29 we have σ = ∂
∗
G∂ , [∂, σ] = 0 and, denoting by H the harmonic

projection,

[∂, σ]∂ = G∂∆∂∂ = (Id−H)∂ = ∂.

[2] (cf. Exercise VI.39) We prove only Im ∂∂ = ker ∂ ∩ Im ∂, being the other equality
the conjugate of this one. The inclusion ⊂ is evident, conversely let x = ∂α be a
∂-closed differential form; we can write

x = ∂α = [∂, σ]∂α = ∂σ∂α + σ∂∂α = −∂∂σα− σ∂x = ∂∂(σα).

Corollary VI.38. Let M be a compact Kähler manifold. Then for every p, q the
natural maps

ker ∂ ∩ ker ∂ ∩ Lp,q

∂∂Lp−1,q−1
→ ker ∂ ∩ ker ∂ ∩ Lp,q

∂(ker ∂ ∩ Lp,q−1)
→ ker ∂ ∩ Lp,q

∂Lp,q−1
= Hq(M, Ωp)

ker ∂ ∩ ker ∂ ∩ Lp,q

∂∂Lp−1,q−1
→ ker ∂ ∩ ker ∂ ∩ Lp,q

∂(ker ∂ ∩ Lp−1,q)
→ ker ∂ ∩ Lp,q

∂Lp−1,q

are isomophisms.

Proof. The two lines are conjugates each other and then it is sufficient to prove
that the maps on the first row are isomorphisms.
Choose a Kähler metric, every ∂-closed form φ can be written as φ = α + ∂ψ with
�α = 0. Since � = � we have ∂α = 0 and then the above maps are surjective.
According to Theorem VI.37 we have

∂∂(Lp−1,q−1) ⊂ ∂(ker ∂ ∩ Lp,q−1) ⊂ ker ∂ ∩ ∂(Lp,q−1) ⊂ ∂∂(Lp−1,q−1)

and then all the maps are injective.
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Exercise VI.39. Prove that for a double complex (L∗,∗, d, δ) of vector spaces (with
d, δ differentials of respective bidegrees (1, 0) and (0, 1)) the following conditions are
equivalent:

1. There exists a linear operator σ : L∗,∗ → L∗,∗−1 of bidegree (0,−1) such that

[d, σ] = 0, [δ, σ]d = [δ, σd] = d.

2. Im dδ = ker δ ∩ Im d.
(Hint: The implication [1 ⇒ 2] is the same as in Theorem VI.37. In order to prove
[2⇒ 1] write La,b = F a,b ⊕Ca,b with F a,b = dLa−1,b and observe that the complexes
(F a,∗, δ) are acyclic. Define first σ : F a,b → F a,b−1 such that [δ, σ]d = d and then
σ : Ca,b → Ca,b−1 such that [d, σ] = 0.) �

7. Historical survey, VI

Most of the properties of Kähler manifolds are stable under deformation. For ex-
ample:

Theorem VI.40. Let f : M → B be a family of compact complex manifolds and
assume that Mb is Kählerian for some b ∈ B.
Then there exists an open neighbourhood b ∈ U ⊂ B such the functions hp,q : U → N,
hp,q(u) = dimC Hp,q(Mu) are constant and

∑
p+q=m hp,q(u) = dimC Hm(Mu, C) for

every u ∈ U .

Proof. (Idea) Exercise I.18 implies
∑

p+q=m hp,q(u) ≥ dimC Hm(Mu, C) and
the equality holds whenever Mu is Kählerian. On the other side, by semicontinuity
theorem I.42 the functions hp,q are semicontinuous and by Ehresmann’s theorem the
function u �→ dimC Hm(Mu, C) is locally constant.

Theorem VI.40 is one of the main ingredients for the proof of the following theorem,
proved by Kodaira (cf. [37], [78])

Theorem VI.41. Let f : M → B be a family of compact complex manifolds. Then
the subset {b ∈ B |Mb is Kählerian } is open in B.

The proof of VI.41 requires hard functional and harmonic analysis.

It seems that the name Kähler manifolds comes from the fact that they were defined
in a note of Erich Kähler (1906-2000) of 1933 but all their (first) good properties were
estabilished by W.V.D. Hodge some years later.



CHAPTER VII

Deformations of manifolds with trivial canonical bundle

In the first part of this chapter we prove, following [21] and assuming Kuranishi
theorem IV.36, the following

Theorem VII.1 (Bogomolov-Tian-Todorov). Let M be a compact Kähler manifold
with trivial canonical bundle KM = OM . Then M admits a semiuniversal deforma-
tion with smooth base (H1(M, TM ), 0).

According to Corollary IV.37, it is sufficient to to show that the natural map

DefM

(
C[t]

(tn+1)

)
→ DefM

(
C[t]
(t2)

)
is surjective for every n ≥ 1. This will be done using Corollary V.52 and the so called
Tian-Todorov’s lemma.
A generalization of this theorem has been given recently by H. Clemens [10]. We will
prove of Clemens’ theorem in Chapter IX.

In the second part we introduce some interesting classes of dg-algebras which arise
naturally both in mathematics and in physics: in particular we introduce the notion of
differential Gerstenhaber algebra and differential Gerstenhaber-Batalin-Vilkovisky al-
gebra. Then we show (Example VII.30) that the algebra of polyvector fields on a man-
ifold with trivial canonical bundle carries the structure of differential Gerstenhaber-
Batalin-Vilkovisky algebra.

1. Contraction on exterior algebras

Let K be a fixed field and E a vector space over K of dimension n; denote by E∨ its
dual and by 〈, 〉 : E×E∨ → C the natural pairing. Given v ∈ E, the (left) contraction
by v is the linear operator v 8 :

∧b E∨ → ∧b−1 E∨ defined by the formula

v 8 (z1 ∧ . . . ∧ zb) =
b∑

i=1

(−1)i−1〈v, zi〉z1 ∧ . . . ∧ ẑi ∧ . . . ∧ zb.

For every a ≤ b the contraction∧aE ×∧bE∨ �−→∧b−aE∨

is the bilinear extension of
(va ∧ . . . ∧ v1) 8 (z1 ∧ . . . ∧ zb) = va 8 ((va−1 ∧ . . . ∧ v1) 8 (z1 ∧ . . . ∧ zb))

=
∑
σ∈G

(−1)σ

(
a∏

i=1

〈vi, zσ(i)〉
)

zσ(a+1) ∧ . . . ∧ zσ(b)

where G ⊂ Σb is the subset of permutations σ such that σ(a + 1) < σ(a + 2) < . . . <
σ(b). We note that if a = b then the contraction is a nondegenerate pairing giving
a natural isomorphism (

∧aE)∨ =
∧aE∨. This isomorphism is, up to sign, the same

Marco Manetti: Lectures on deformations of complex manifolds
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considered is Section VI.2.
If a > b we use the convention that 8= 0.

Lemma VII.2. 1. For every v ∈ E the operator v 8 is a derivation of degree −1
of the graded algebra

∧∗E∨.
2. For every v ∈ ∧a E, w ∈ ∧b E, z ∈ ∧c E∨, we have

(v ∧ w) 8 z = v 8 (w 8 z).

In particular the operator w 8 :
∧c E∨ → ∧c−b E∨ is the adjoint of ∧w :

∧c−b E →∧c E.
3. If v ∈ ∧a E∨, w ∈ ∧b E, Ω ∈ ∧n E∨, where dimE = n, a ≤ b, then:

v ∧ (w 8 Ω) = (v 8 w) 8 Ω.

Proof. [1] Complete v to a basis v = e1, . . . , en of E and let z1, . . . , zn be its
dual basis. Every w ∈ ∧∗ E∨ can be written in a unique way as w = z1 ∧ w1 + w2

with w1, w2 ∈
∧∗ v⊥. According to the definition of 8 we have v 8 w = w1.

If w = z1 ∧ w1 + w2, u = z1 ∧ u1 + u2 are decompositions as above then

(v 8 w) ∧ u + (−1)ww ∧ (v 8 u) = w1 ∧ (z1 ∧ u1 + u2) + (−1)w2(z1 ∧ w1 + w2) ∧ u1

= w1 ∧ u2 + (−1)w2w2 ∧ u1.

v 8 (w ∧ u) = v 8 ((z1 ∧ w1 + w2) ∧ (z1 ∧ u1 + u2))

= v 8 (z1 ∧ w1 ∧ u2 + w2 ∧ z1 ∧ u1 + w2 ∧ u2)

= w1 ∧ u2 + (−1)w2w2 ∧ u1.

[2] Immediate from the definition.
[3] Induction on a; if a = 1 then complete v to a basis v = z1, . . . , zn of E∨ and
denote e1, . . . , en ∈ E its dual basis. Writing

w = e1 ∧ w1 + w2, wi ∈
∧∗v⊥, wi 8 Ω = v ∧ ηi, ηi ∈

∧∗e⊥1 ,

we have by Item 2

w 8 Ω = (e1 ∧ w1) 8 Ω + (w2 8 Ω) = e1 8 (w1 8 Ω) + (w2 8 Ω) = η1 + v ∧ η2,

and then

v ∧ (w 8 Ω) = v ∧ η1 = w1 8 Ω = (v 8 w) 8 Ω.

If a > 1 and v = v1 ∧ v2, with v1 ∈ E∨, v2 ∈
∧a−1 E∨ then by item 2 and inductive

assumption

v1 ∧ v2 ∧ (w 8 Ω) = v1 ∧ ((v2 8 w) 8 Ω) = (v1 8 (v2 8 w)) 8 Ω = ((v1 ∧ v2) 8 w) 8 Ω.

Lemma VII.3. For every vector space E of dimension n and every integer a =
0, . . . , n, the contraction operator defines a natural isomorphism∧aE

i−→∧nE ⊗∧n−aE∨, i(v) = Z ⊗ (v 8 Ω)

where (Z,Ω) ∈ ∧n E ×∧n E∨ is any pair satisfying Z 8 Ω = 1.

Proof. Trivial.

Exercise VII.4. Let 0−→E−→F−→G−→0 be an exact sequence of vector spaces
with dimG = n < ∞. Use the contraction operator to define, for every a ≤ dimE,
a natural surjective linear map

∧a+nF → ∧aE ⊗∧nG. �
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2. The Tian-Todorov’s lemma

The isomorphism i of Lemma VII.3 can be extended fiberwise to vector bundles;
in particular, if M is a complex manifold of dimension n and TM is its holomorphic
tangent bundle, we have holomorphic isomorphisms

i :
∧aTM−→

∧nTM ⊗
∧n−aT∨

M = Ωn−a
M (K∨

M )

which extend to isomorphisms between their Dolbeault’s sheaf resolutions

i : (A0,∗(
∧aTM ), ∂)−→(A0,∗(

∧nTM ⊗
∧n−aT∨

M ), ∂) = (An−a,∗(K∨
M ), ∂).

If z1, . . . , zn are local holomorphic coordinates then a local set of generators of
∧aTM

is given by the polyvector fields
∂

∂zI
=

∂

∂zi1

∧ . . . ∧ ∂

∂zia

, being I = (i1, . . . , ia) a

multiindex.
If Ω is a local frame of KM and Z a local frame of K∨

M such that Z 8 Ω = 1, then

i

(
∂

∂zI
dzJ

)
= Z ⊗

(
∂

∂zI
dzJ 8 Ω

)
= Z ⊗

(
∂

∂zI
8 Ω

)
dzJ .

Given a fixed Hermitian metric h on the line bundle K∨
M we denote by D = D′ + ∂

the unique hermitian connection on K∨
M compatible with the complex structure.

We recall (cf. [35]) that D′ : A0,b(K∨
M ⊗Ωa

M )→ A0,b(K∨
M ⊗Ωa+1

M ) is defined in local
coordinates as

D′(Z ⊗ φ) = Z ⊗ (θ ∧ φ + ∂φ), φ ∈ Aa,b,

where θ = ∂ log(|Z|2) = ∂ log(h(Z, Z)) is the connection form of the frame Z.
We have moreover (D′)2 = 0 and D′∂ + ∂D′ = Θ is the curvature of the metric.

We can now define a C-linear operator (depending on h)1

∆: A0,b(
∧aTM )→ A0,b(

∧a−1TM ), ∆(φ) = i−1D′(i(φ)).

Lemma VII.5. Locally on M , with Ω, Z and θ as above we have

∆(φ) 8 Ω = θ ∧ (φ 8 Ω) + ∂(φ 8 Ω)

for every φ ∈ A0,b(
∧∗ TM ).

Proof. By definition

i∆(φ) = Z ⊗ (∆(φ) 8 Ω),

i∆(φ) = D′(i(φ)) = D′(Z ⊗ (φ 8 Ω)) = Z ⊗ (θ ∧ (φ 8 Ω) + ∂(φ 8 Ω)).

Lemma VII.6. In local holomorphic coordinates z1, . . . , zn we have

∆
(

f
∂

∂zI
dzJ

)
=

(
(θf + ∂f) 8 ∂

∂zI

)
dzJ , f ∈ A0,0,

where θ is the connection form of the frame Z =
∂

∂z1
∧ . . . ∧ ∂

∂zn
and the right hand

side is considered = 0 when I = ∅.

1don’t confuse this ∆ with the Laplacian



110 VII. DEFORMATIONS OF MANIFOLDS WITH TRIVIAL K

Proof. We first note that if φ ∈ A0,0(
∧aTM ) then i(φdzJ) = i(φ)dzJ and

D′i(φdzJ) = D′(Z ⊗ (φ 8 Ω)⊗ dzJ) = D′(Z ⊗ (φ 8 Ω))⊗ dzJ :

this implies that ∆(φdzJ) = ∆(φ)dzJ . According to Lemma VII.5

∆
(

f
∂

∂zI

)
8 Ω = θ ∧

(
f

∂

∂zI
8 Ω

)
+ ∂

(
f

∂

∂zI
8 Ω

)
Since Ω = dzn ∧ . . . ∧ dz1 we have ∂

(
∂

∂zI
8 Ω

)
= 0 and then, by Item 3 of

Lemma VII.2,

∆
(

f
∂

∂zI

)
8 Ω = (θf + ∂f) ∧

(
∂

∂zI
8 Ω

)
=

(
(θf + ∂f) 8 ∂

∂zI

)
8 Ω.

Setting Pa,b = A0,b(
∧−a TM ) for every a ≤ 0, b ≥ 0, the direct sum P = (

⊕
a,b Pa,b, ∂)

is a sheaf of dg-algebras, where the sections of A0,b(
∧a TM ) have total degree b − a

and ∂ : A0,b(
∧a TM )→ A0,b+1(

∧a TM ) is the Dolbeault differential. The product on
P is the ‘obvious’ one:

(ξ ⊗ φ) ∧ (η ⊗ ψ) = (−1)φ η(ξ ∧ η)⊗ (φ ∧ ψ).

Lemma VII.7. The C-linear operator ∆: P → P has degree +1; moreover ∆2 = 0
and [∆, ∂] = ∆∂ + ∂∆ = i−1Θi.

Proof. Evident.

Consider the bilinear symmetric map of degree 1, Q : P × P → P
Q(α, β) = ∆(α ∧ β)−∆(α) ∧ β − (−1)αα ∧∆(β).

A brutal computation in local coordinates shows that Q is independent of the metric.
In fact, for every pair of C∞ functions f, g

Q

(
f

∂

∂zI
dzJ , g

∂

∂zH
dzK

)
= (−1)|J | |H|Q

(
f

∂

∂zI
, g

∂

∂zH

)
dzJ ∧ dzK

and

Q

(
f

∂

∂zI
, g

∂

∂zH

)
= (θfg + ∂(fg)) 8

(
∂

∂zI
∧ ∂

∂zH

)
−

−g

(
(θf + ∂f) 8 ∂

∂zI

)
∧ ∂

∂zH
− (−1)|I|f

∂

∂zI
∧

(
(θg + ∂g) 8 ∂

∂zH

)
.

According to Lemma VII.2, Item 1:

Q

(
f

∂

∂zI
, g

∂

∂zH

)
= f

(
∂g 8 ∂

∂zI

)
∧ ∂

∂zH
+ (−1)|I|g

∂

∂zI
∧

(
∂f 8 ∂

∂zH

)
.

In particular if |I| = 0, |H| = 1 then

Q

(
fdzJ , g

∂

∂zh
dzK

)
= (−1)|J |g

∂f

∂zh
dzJ ∧ dzK ,

while, if |I| = |H| = 1 then

Q

(
f

∂

∂zi
dzJ , g

∂

∂zh
dzK

)
= (−1)|J |

(
f

∂g

∂zi

∂

∂zh
− g

∂f

∂zh

∂

∂zi

)
dzJ ∧ dzK .

Recalling the definition of the bracket [ , ] in the Kodaira-Spencer algebra KSM =⊕
bA0,b(TM ) we have:
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Lemma VII.8 (Tian-Todorov). If α ∈ A0,a(TM ), β ∈ A0,b(TM ) then

(−1)a[α, β] = ∆(α ∧ β)−∆(α) ∧ β − (−1)a−1α ∧∆(β).

In particular the bracket of two ∆-closed forms is ∆-exact.

Example VII.9. If M is compact Kähler and c1(M) = 0 in H2(M, C) then by [35,
2.23] there exists a Hermitian metric on K∨

M such that Θ = 0; in this case [∆, ∂] = 0
and ker ∆ is a differential graded subalgebra of KSM .

Example VII.10. If M has a nowhere vanishing holomorphic n-form Ω (n = dimM)
we can set on K∨

M the trivial Hermitian metric induced by the isomorphism Ω: K∨
M →

OM . In this case, according to Lemma VII.5, the operator ∆ is defined by the rule

(∆α) 8 Ω = ∂(α 8 Ω).

3. A formality theorem

Theorem VII.11. Let M be a compact Kähler manifold with trivial canonical bun-
dle KM = OM . Then the Kodaira-Spencer DGLA

KSM =
⊕
p

Γ(M,A0,p(TM ))

is quasiisomorphic to an abelian DGLA.

Proof. Let Ω ∈ Γ(M, KM ) be a nowhere vanishing holomorphic n-form (n =
dimM); via the isomorphism Ω: K∨

M → OM , the isomorphism of complexes

i : (A0,∗(TM ), ∂)→ (An−1,∗, ∂)

is given in local holomorphic coordinates by

i

(
f

∂

∂zi
dzI

)
= f

(
∂

∂zi
8 Ω

)
dzI

and induces a structure of DGLA, isomorphic to KSM on

Ln−1,∗ =
⊕
p

Γ(M,An−1,p).

Taking on K∨
M the trivial metric induced by Ω: K∨

M → OM , the connection D is
equal to the De Rham differential and then the Tian-Todorov’s lemma implies that
the bracket of two ∂-closed form of Ln−1,∗ is ∂-exact; in particular

Q∗ = ker ∂ ∩ Ln−1,∗

is a DGL subalgebra of Ln−1,∗.
Consider the complex (R∗, ∂), where

Rp =
ker ∂ ∩ Ln−1,p

∂Ln−2,p

endowed with the trivial bracket, again by Lemma VII.8 the projection Q∗ → R∗ is
a morphism of DGLA.
It is therefore sufficient to prove that the DGLA morphisms

Ln−1,∗ Q∗		 �� R∗

are quasiisomorphisms.
According to the ∂∂-lemma VI.37, ∂(ker ∂) ⊂ Im ∂ and then the operator ∂ is trivial
on R∗: therefore

Hp(R∗) =
ker ∂ ∩ Ln−1,p

∂Ln−2,p
, Hp(Ln−1,∗) =

ker ∂ ∩ Ln−1,p

∂Ln−1,p−1
,
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Hp(Q∗) =
ker ∂ ∩ ker ∂ ∩ Ln−1,p

∂(ker ∂ ∩ Ln−1,p−1)
.

The conclusion now follows immediately from Corollary VI.38.

Corollary VII.12. Let M be a compact Kähler manifold with trivial canonical
bundle KM = OM . For every local Artinian C-algebra (A,mA) we have

DefM (A) = H1(M, TM )⊗mA.

In particular

DefM

(
C[t]

(tn+1)

)
→ DefM

(
C[t]
(t2)

)
is surjective for every n ≥ 2.

Proof. According to Theorem V.55 and Corollary V.52 we have DefM = DefR∗ .
Since R∗ is an abelian DGLA we have by Proposition V.49

DefR∗(A) = H1(R∗)⊗mA = H1(KSM )⊗mA = H1(M, TM )⊗mA.

4. Gerstenhaber algebras and Schouten brackets

Lemma VII.13. Let (G,∧) be a graded Z-commutative algebra and let [, ] : G[−1]×
G[−1]→ G[−1] be a skewsymmetric bilinear map of degree 0 such that

ada = [a,−] ∈ Derdeg(a,G[−1])(G, G), ∀a ∈ G[−1].

(Note that this last condition is equivalent to the so-called Odd Poisson identity

[a, b ∧ c] = [a, b] ∧ c + (−1)a(b−1)b ∧ [a, c],

[a ∧ b, c] = a ∧ [b, c] + (−1)c(b−1)[a, c] ∧ b,

for every a, b, c ∈ G[−1], x = deg(x, G[−1]).)
Let G ⊂ G be a set of homogeneous generators of the algebra G, then:

1. [, ] is uniquely determined by the values [a, b], a, b ∈ G.
2. A derivation d ∈ Dern(G, G) satisfies [d, ada] = add(a) for every a ∈ G[−1] if

and only if

d[a, b] = [da, b] + (−1)na[a, db]

for every a, b ∈ G.
3. [, ] satisfies the Jacobi condition ad[a,b] = [ada, adb] if and only if

[[a, b], c] = [a, [b, c]]− (−1)a b[b, [a, c]].

for every a, b, c ∈ G.

Proof. 1) is clear.
If a ∈ G then by 2) the derivations [d, ada] and add(a) take the same values in G and
then [d, ada] = add(a). The skewsymmetry of [, ] implies that for every b ∈ G[−1] the
derivations [d, adb] and add(b) take the same values in G.
The proof of 3) is made by applying twice 2), first with d = ada, a ∈ G, and then
with d = adb, b ∈ G[−1].
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Definition VII.14. A Gerstenhaber algebra is the data of a graded Z-commutative
algebra (G,∧) and a morphism of graded vector spaces ad : G[−1]→ Der∗(G, G) such
that the bracket

[, ] : G[−1]i ×G[−1]j → G[−1]i+j , [a, b] = ada(b)

induce a structure of graded Lie algebra on G[−1] (cf. [17, p. 267]).
A morphism of Gerstenhaber algebras is a morphism of graded algebras commuting
with the bracket [, ].

For every graded vector space G there exists an isomorphism from the space of
bilinear skewsymmetric maps [, ] : G[−1]×G[−1]→ G[−1] of degree 0 and the space
of bilinear symmetric maps Q : G × G → G of degree 1; this isomorphism, called
décalage, is given by the formula2

Q(a, b) = (−1)deg(a,G[−1])[a, b].

Therefore a Gerstenhaber algebra can be equivalently defined as a graded algebra
(G,∧) endowed with a bilinear symmetric map Q : G×G→ G of degree 1 satisfying
the identities

Odd Poisson Q(a, b ∧ c) = Q(a, b) ∧ c + (−1)(a+1)bb ∧Q(a, c),

Jacobi Q(a, Q(b, c)) = (−1)aQ(Q(a, b), c) + (−1)a bQ(b, Q(a, c)),

where a = deg(a, G), b = deg(b, G).

Example VII.15. (Schouten algebras) A particular class of Gerstenhaber algebras
are the so called Schouten algebras: here the bracket is usually called Schouten
bracket.
Consider a commutative K -algebra A0 and let A−1 ⊂ DerK (A0, A0) be an A0-
submodule such that [A−1, A−1] ⊂ A−1. Define

A =
⊕
i≥0

A−i, A−i =
∧
A0

iA−1.

With the wedge product, A is a graded algebra of nonpositive degrees.
There exists a unique structure of Gerstenhaber algebra (A,∧, [, ]) such that for every
a, b ∈ A[−1]1 = A0, f, g ∈ A[−1]0 = A−1

ada(b) = 0, adf (a) = f(a), adf (g) = [f, g].

In fact A is generated by A0 ∪ A−1 and, according to Lemma VII.13, the skew-
symmetric bilinear map

[ξ0 ∧ . . . ∧ ξn, h] =
n∑

i=0

(−1)n−iξi(h)ξ0 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξn

[ξ0 ∧ . . . ∧ ξn, ζ0 ∧ . . . ∧ ζm] =

=
n∑

i=0

m∑
j=0

(−1)i+j [ξi, ζj ] ∧ ξ0 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξn ∧ ζ0 ∧ . . . ∧ ζ̂j ∧ . . . ∧ ζm

where h ∈ A0, ξ0, . . . , ξn, ζ0, . . . , ζm ∈ A−1 is well defined and it is the unique
extension of the natural bracket such that ad(A[−1]) ⊂ Der∗(A, A).
We need to show that [, ] satisfies the Jacobi identity

[[a, b], c] = [a, [b, c]]− (−1)a b[b, [a, c]].

2The décalage isomorphism is natural up to sign; the choice of deg(a, G[−1]) instead of deg(a, G)
is purely conventional.
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Again by Lemma VII.13 we may assume that 0 ≤ a ≤ b ≤ c. There are 5 possible
cases, where the Jacobi identity is satisfied for trivial reasons, as summarized in the
following table:

a b c Jacobi is true because..

1 1 1 all terms are = 0

0 1 1 all terms are = 0

0 0 1 definition of [, ] on A−1

0 0 0 Jacobi identity on A−1

Example VII.16. Let M be a complex manifold of dimension n, the sheaf of graded
algebras T = ⊕i≤0Ti, Ti = A0,0(

∧−i TM ), admits naturally a Schouten bracket.
In local holomorphic coordinates z1, . . . , zn, since[

∂

∂zi
,

∂

∂zj

]
= 0,

[
∂

∂zI
, g

]
Sch

= (−1)|I|−1

(
∂g 8 ∂

∂zI

)
,

the Odd Poisson identity implies that the Schouten bracket takes the simple form[
f

∂

∂zI
, g

∂

∂zH

]
Sch

= (−1)|I|−1f

(
∂g 8 ∂

∂zI

)
∧ ∂

∂zH
− g

∂

∂zI
∧

(
∂f 8 ∂

∂zH

)
.

Definition VII.17. A differential Gertstenhaber algebra is a Gerstenhaber algebra
(G,∧, [, ]) endowed with a differential d ∈ Der1(G, G) making (G, d, [, ]) a differential
graded Lie algebra.

Example VII.18. Given any Gertstenhaber algebra G and an element a ∈ G0 =
G[−1]1 such that [a, a] = 0 we have that d = ada gives a structure of differential
Gerstenhaber algebra.

Exercise VII.19. For every f ∈ K [x1, . . . , xn] the Koszul complex of the sequence
∂f

∂x1
, . . . ,

∂f

∂xn
carries a structure of differential Gerstenhaber algebra. �

5. d-Gerstenhaber structure on polyvector fields

Let M be a fixed complex manifold, then the sheaf of dg-algebras P defined in
Section 2, endowed with the Schouten bracket[

f
∂

∂zI
dzJ , g

∂

∂zH
dzK

]
Sch

= (−1)|J |(|H|−1)

[
f

∂

∂zI
, g

∂

∂zH

]
Sch

dzJ ∧ dzK

is a sheaf of differential Gerstenhaber algebras.
We have only to verify that locally ∂ is a derivation of the graded Lie algebra (P, [, ]):
this follows immediately from Lemma VII.13 and from the fact that locally the
Kodaira-Spencer DGLA generates P as a graded algebra.
Via the décalage isomorphism, the Schouten bracket corresponds to the symmetric
bilinear map of degree 1 Q : P × P → P given in local holomorphic coordinates by
the formulas

Q

(
fdzJ

∂

∂zI
, gdzK

∂

∂zH

)
= (−1)|K|(|I|−1)+|J |dzJ ∧ dzKQ

(
f

∂

∂zI
, g

∂

∂zH

)
,

where

Q

(
f

∂

∂zI
, g

∂

∂zH

)
= f

(
∂g 8 ∂

∂zI

)
∧ ∂

∂zH
+ (−1)|I|g

∂

∂zI
∧

(
∂f 8 ∂

∂zH

)
.
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Notice that, in the notation of Section 2,

Q(α, β) = ∆(α ∧ β)−∆(α) ∧ β − (−1)αα ∧∆(β)

and therefore we also have the following

Lemma VII.20 (Tian-Todorov). for every α, β ∈ P[−1],

[α, β]Sch = α ∧∆β + (−1)deg(α,P[−1])(∆(α ∧ β)−∆α ∧ β).

There exists a natural morphism ̂: P → Hom(A∗,∗,A∗,∗) of sheaves of bigraded
vector spaces on M given in local coordinates by

̂
φ

∂

∂zI
(η) = φ ∧

(
∂

∂zI
8 η

)
.

Since, for every φ ∈ P0,p = A0,p, η ∈ A∗,∗, we have

∂

∂zI
8 (φ ∧ η) = (−1)p|I|φ ∧

(
∂

∂zI
8 η

)
the hat morphism ̂ is a morphism of algebras, being the product in Hom(A∗,∗,A∗,∗)
the composition product. We observe that the composition product is associative and
therefore Hom(A∗,∗,A∗,∗) has also a natural structure of sheaf of graded Lie algebras.
Since P is graded commutative, [â, b̂] = 0 for every a, b ∈ P.

Lemma VII.21. For every a, b ∈ P homogeneous,

1. ∂̂a = [∂, â].
2. Q̂(a, b) = [[∂, â], b̂] = −(−1)aâ∂b̂− (−1)a b+b b̂∂â± ∂âb̂± b̂â∂

Proof. The proof of the first identity is straightforward and left to the reader.
By Jacobi identity,

0 = [∂, [â, b̂]] = [[∂, â], b̂]− (−1)a b[[∂, b̂], â]

and therefore both sides of the equality VII.21 are graded symmetric.
Moreover, since b̂ ∧ c = b̂ĉ and

Q(a, b ∧ c) = Q(a, b) ∧ c + (−1)(a+1)bb ∧Q(a, c),

[[∂, â], b̂ĉ] = [[∂, â], b̂]ĉ + (−1)(a+1)bb̂[[∂, â], ĉ],

it is sufficient to check the equality only when a, b = f, dzj ,
∂

∂zi
, f ∈ P0,0 = A0,0.

i) If φ ∈ P0,∗ then

[∂, φ̂]η = ∂(φ ∧ η)− (−1)φφ ∧ ∂η = ∂φ ∧ η.

In particular [∂, d̂zj ] = 0, Q(dzj , b) = 0 for every b.
ii) If f, g ∈ P0,0 then Q(f, g) ∈ P1,0 = 0 and

[[∂, f̂ ], ĝ]η = ∂f ∧ gη − g(∂f ∧ η) = 0.

If f ∈ P0,0 then Q

(
f,

∂

∂zi

)
=

∂

∂zi
8 ∂f =

∂f

∂zi
and[

[∂, f̂ ],
∂̂

∂zi

]
η = ∂f ∧

(
∂

∂zi
8 η

)
+

∂

∂zi
8 (∂f ∧ η) =

(
∂

∂zi
8 ∂f

)
∧ η
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where the last equality follows from the Leibnitz rule applied to the derivation
∂

∂zi
8.

Finally Q

(
∂

∂zi
,

∂

∂zj

)
= 0; since ∂,

∂̂

∂zi
,

∂̂

∂zj
are derivations ofA∗,∗, also

[[
∂,

∂̂

∂zi

]
,

∂̂

∂zj

]
is a derivation of bidegree (−1, 0) and then it is sufficient to check the equality for
η = dzi. This last verification is completely straightforward and it is left to the
reader.

Exercise VII.22. Prove that Ω∗ = {a ∈ P | [∂, â] = 0 }. �

6. GBV-algebras

In this section K is a fixed field of characteristic 0.

Definition VII.23. A GBV (Gerstenhaber-Batalin-Vilkovisky) algebra is the data
of a graded algebra (G,∧) and a linear map ∆: G→ G of degree 1 such that:

1. ∆2 = 0
2. The symmetric bilinear map of degree 1

Q(a, b) = ∆(a ∧ b)−∆(a) ∧ b− (−1)aa ∧∆(b)

satisfies the odd Poisson identity

Q(a, b ∧ c) = Q(a, b) ∧ c + (−1)(a+1)bb ∧Q(a, c).

Note that the second condition on the above definition means that for every homo-
geneous a ∈ G, the linear map Q(a,−) is a derivation of degree a + 1.
The map Q corresponds, via the décalage isomorphism, to a skewsymmetric bilinear

map of degree 0, [, ] : G[−1]×G[−1]→ G[−1]; the expression of [, ] in terms of ∆ is

[a, b] = a ∧∆(b) + (−1)deg(a,G[−1])(∆(a ∧ b)−∆(a) ∧ b).

Example VII.24. If ∆ is a differential of a graded algebra (G,∧), then Q = 0 and
(G,∧,∆) is a GBV algebra called abelian.

Example VII.25. The sheaf P of polyvector fields on a complex manifold, endowed
with the operator ∆ described in Section 2 is a sheaf of GBV algebra.

Exercise VII.26. Let (G,∧,∆) be a GBV algebra. If G has a unit 1, then ∆(1) =
0. �
Lemma VII.27. For every a, b ∈ G homogeneous

∆Q(a, b) + Q(∆(a), b) + (−1)aQ(a,∆(b)) = 0.

Proof. It is sufficient to write Q in terms of ∆ and use ∆2 = 0.

Theorem VII.28. If (G,∧,∆) is a GBV algebra then (G[−1], [, ],∆) is a DGLA
and therefore (G,∧, Q) is a Gerstenhaber algebra.

Proof. Working in G[−1] (i.e. a = deg(a, G[−1])) we have from Lemma VII.27

∆[a, b] = [∆(a), b] + (−1)a[a,∆(b)]

and then we only need to prove the Jacobi identity.
Replacing a = α, b = β ∧ γ in the above formula we have

[α,∆(β ∧ γ)] = (−1)α(∆[α, β ∧ γ]− [∆α, β ∧ γ])

and then [α,∆(β ∧ γ)] is equal to

(−1)α∆([α, β] ∧ γ) + (−1)α β∆(β ∧ [α, γ])− (−1)α[∆α, β]∧γ +(−1)(α+1)ββ∧[∆α, γ].
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Writing

[α, [β, γ]] = [α, β ∧∆γ] + (−1)β([α,∆(β ∧ γ)]− [α,∆β ∧ γ]),

[[α, β], γ] = [α, β] ∧∆γ + (−1)α+β(∆([α, β] ∧ γ)−∆[α, β] ∧ γ),

[β, [α, γ]] = β ∧∆[α, γ] + (−1)β(∆(β ∧ [α, γ])−∆β ∧ [α, γ])

we get

[α, [β, γ]] = [[α, β], γ] + (−1)α β[β, [α, γ]].

Definition VII.29. Let (G,∧,∆) be a GBV-algebra and d a differential of degree
1 of (G,∧). If d∆ + ∆d = 0 then the gadget (G,∧,∆, d) is called a differential GBV
algebra.

Example VII.30. Let P be the algebra of polyvector fields on a complex manifold
M . In the notation of Section 2, (P,∧,∆, ∂) is a sheaf of differential GBV algebras
if and only if the connection D is integrable.
This happen in particular when M has trivial canonical bundle and D is the trivial
connection.

Exercise VII.31. If (G,∧,∆, d) is a differential GBV-algebra then (G[−1], [, ], d +
�∆) is a DGLA for every � ∈ K . �

7. Historical survey, VII

The Schouten bracket was introduced by Schouten in [70] while the Jacobi identity
was proved 15 years later by Nijenhuis [58].
The now called Gerstenhaber algebras have been first studied in [17] as a structure
on the cohomology of an associative ring.
Concrete examples of GBV algebra arising from string theory were studied in 1981
by Batalin and Vilkovisky, while the abstract definition of GBV algebra given in this
notes was proposed in [48] (cf. also [75]).
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CHAPTER VIII

Graded coalgebras

This Chapter is a basic course on graded coalgebra, with particular emphasis on
symmetric graded coalgebra. The aim is give the main definitions and to give all the
preliminaries for a satisfactory theory of L∞-algebras.
Through all the chapter we work over a fixed field K of characteristic 0. Unless
otherwise specified all the tensor products are made over K .
The main references for this Chapter are [61, Appendix B] [22], [6].

1. Koszul sign and unshuffles

Let V, W ∈ G be graded vector spaces over K . We recall (Definition IV.2) that the
twisting map T : V ⊗W → W ⊗ V is defined by the rule T (v ⊗ w) = (−1)v ww ⊗ v,
for every pair of homogeneous elements v ∈ V , w ∈W .

The tensor algebra generated by V ∈ G is by definition the graded vector space

T (V ) =
⊕

n≥0

⊗nV

endowed with the associative product (v1⊗ . . .⊗ vp)(vp+1⊗ . . .⊗ vn) = v1⊗ . . .⊗ vn.

Let I ⊂ T (V ) be the homogeneous ideal generated by the elements x⊗y−T (x⊗y),
x, y ∈ V ; the symmetric algebra generated by V is defined as the quotient

S(V ) = T (V )/I =
⊕

n≥0

⊙nV,
⊙nV =

⊗nV/(
⊗nV ∩ I)

The product in S(V ) is denoted by :. In particular if π : T (V ) → S(V ) is the pro-
jection to the quotient then for every v1, . . . , vn ∈ V , v1: . . .: vn = π(v1⊗ . . .⊗ vn).

The exterior algebra generated by V is the quotient of T (V ) by the homogeneous
ideal J generated by the elements x⊗ y + T (x⊗ y).

∧
V = T (V )/J =

⊕
n≥0

∧nV,
∧nV =

⊗nV/(
⊗nV ∩ J).

Every morphism of graded vector spaces f : V → W induces canonically three ho-
momorphisms of graded algebras

T (f) : T (V )→ T (W ), S(f) : S(V )→ S(W ),
∧

(f) :
∧

V → ∧
W.

The following convention is adopted in force: let V, W be graded vector spaces and
F : T (V )→ T (W ) a linear map. We denote by

F i : T (V )→⊗iW, Fj :
⊗jV → T (W ), F i

j :
⊗jV →⊗iW

the compositions of F with the inclusion
⊗jV → T (V ) and/or the projection

T (W )→⊗iW .
Similar terminology is adopted for linear maps S(V )→ S(W ).

Marco Manetti: Lectures on deformations of complex manifolds
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If v1, . . . , vn is an ordered tuple of homogeneous elements of V and σ : {1, . . . , s} →
{1, . . . , n} is any map, we denote vσ = vσ1 : vσ2 : . . .: vσs ∈

⊙sV .
If I ⊂ {1, . . . , n} is a subset of cardinality s we define vI as above, considering I as
a strictly increasing map I : {1, . . . , s} → {1, . . . , n}.
If I1∪. . .∪Ia = J1∪. . .∪Jb = {1, . . . , n} are decompositions of {1, . . . , n} into disjoint

subsets, we define the Koszul sign ε

(
V,

I1, . . . , Ia

J1, . . . , Jb
; {vh}

)
= ±1 by the relation

ε

(
V,

I1, . . . , Ia

J1, . . . , Jb
; {vh}

)
vI1 : . . .: vIa = vJ1 : . . .: vJb

.

Similarly, if σ is a permutation of {1, . . . , n}, ε(V, σ; v1, . . . , vn) = ±1 is defined by

v1 : . . .: vn = ε(V, σ; v1, . . . , vn)(vσ(1) : . . .: vσ(n)),

or more explicitly

ε(V, σ; v1, . . . , vn) =
∏
i<j

(
σi − σj

|σi − σj |

)vi vj

, v = deg(v;V ).

For notational simplicity we shall write ε(σ; v1, . . . , vn) or ε(σ) when there is no pos-
sible confusion about V and v1, . . . , vn.

The action of the twisting map on
⊗2V extends naturally, for every n ≥ 0, to an

action of the symmetric group Σn on the graded vector space
⊗nV . This action can

be described by the use of Koszul sign, more precisely

σ(v1 ⊗ . . .⊗ vn) = ε(σ; v1, . . . , vn)(vσ(1) ⊗ . . .⊗ vσ(n))

Denote by N : S(V )→ T (V ) the linear map

N(v1 : . . .: vn) =
∑

σ∈Σn

ε(σ; v1, . . . , vn)(vσ(1) ⊗ . . .⊗ vσ(n))

=
∑

σ∈Σn

σ(v1 ⊗ . . .⊗ vn), v1, . . . , vn ∈ V.

Since K has characteristic 0, a left inverse of π : T (V )→ S(V ) is given by
∑

n

Idn

n!
N ,

where, according to our convention, Idn : T (V )→⊗nV is the projection.
For every homomorphism of graded vector spaces f : V →W , we have

N ◦ S(f) = T (f) ◦N : S(V )→ T (W ).

The image of N :
⊙nV → ⊗nV is contained in the subspace (

⊗nV )Σn of Σn-
invariant vectors.

Lemma VIII.1. In the notation above, let W ⊂⊗nV be the subspace generated by
all the vectors v − σ(v), σ ∈ Σn, v ∈⊗nV .
Then

⊗nV = (
⊗nV )Σn ⊕W and N :

⊙nV → (
⊗nV )Σn is an isomorphism with

inverse
π

n!
.

Proof. It is clear from the definition of W that π(W ) = 0; moreover v−N
π

n!
v ∈

W for every v ∈⊗nV , and therefore Im(N) + W =
⊗nV .

On the other side if v is Σn-invariant then

v =
1
n!

∑
σ∈Σn

σ(v) =
1
n!

Nπ(v)

and therefore Im(N) = (
⊗nV )Σn , Im(N) ∩W ⊂ Im(N) ∩ ker(π) = 0.
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For every 0 ≤ a ≤ n, the multiplication map V ⊗a
⊗

V ⊗n−a → V ⊗n is an isomor-
phism of graded vector spaces; we denote its inverse by

aa,n−a : V ⊗n → V ⊗a⊗V ⊗n−a,

aa,n−a(v1 ⊗ . . .⊗ vn) = (v1 ⊗ . . .⊗ va)⊗ (va+1 ⊗ . . .⊗ vn).

The multiplication µ : (
⊙a V )⊗ (

⊙n−a V )→⊙n V is surjective but not injective;

a left inverse is given by la,n−a

(
n

a

)−1

, where

la,n−a(v1 : . . .: vn) =
∑

ε

(
I, Ic

{1, . . . , n} ; v1, . . . , vn

)
vI ⊗ vIc ,

the sum is taken over all subsets I ⊂ {1, . . . , n} of cardinality a and Ic is the com-
plement of I to {1, . . . , n}.

Definition VIII.2. The set of unshuffles of type (p, q) is the subset S(p, q) ⊂ Σp+q

of permutations σ such that σ(i) < σ(i + 1) for every i �= p.

Since σ ∈ S(p, q) if and only if the restrictions σ : {1, . . . , p} → {1, . . . , p + q},
σ : {p + 1, . . . , p + q} → {1, . . . , p + q}, are increasing maps, it follows easily that
the unshuffles are a set of representatives for the cosets of the canonical embedding
of Σp × Σq inside Σp+q. More precisely for every σ ∈ Σp+q there exists a unique
decomposition σ = τρ with τ ∈ S(p, q) and ρ ∈ Σp × Σq.

Exercise VIII.3. Prove the formula

la,n−a(v1 : . . .: vn) =
∑

σ∈S(a,n−a)

ε(σ)(vσ(1) : . . .: vσ(a))⊗ (vσ(a+1) : . . .: vσ(n))

�
Lemma VIII.4. In the above notation, for every 0 ≤ a ≤ n

aa,n−aN = (N ⊗N)la,n−a :
⊙nV →⊗aV ⊗⊗n−aV.

Proof. Easy exercise.

Consider two graded vector spaces V, M and a homogeneous linear map f :
⊗mV →

M . The symmetrization f̃ :
⊙mV →M of f is given by the formula

f̃(a1 : a2 : . . .: am) =
∑

σ∈Σm

ε(V, σ; a1, . . . , am)f(aσ1 ⊗ . . .⊗ aσm).

If g :
⊗lV → V is a homogeneous linear map of degree k, the (non associative)

Gerstenhaber composition product f • g :
⊗m+l−1V →M is defined as

f • g(a1 ⊗ . . .⊗ am+l−1) =

=
m−1∑
i=0

(−1)k(a1+...+ai)f(a1 ⊗ . . .⊗ ai ⊗ g(ai+1 ⊗ . . .⊗ ai+l)⊗ . . .⊗ am+l−1).

The behavior of • with respect to symmetrization is given in the following lemma.

Lemma VIII.5. (Symmetrization lemma) In the notation above

f̃ • g(a1 : . . .: am+l−1) =

=
∑

σ∈S(l,m−1)

ε(V, σ; a1, . . . , am)f̃(g̃(aσ1 : . . .: aσl
): aσl+1

: . . .: aσl+m−1
).
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Proof. We give only some suggestion, leaving the details of the proof as exercise.
First, it is sufficient to prove the formula in the ”universal” graded vector space U
with homogeneous basis a1, . . . , am+l−1 and bI , where I ranges over all injective maps
{1, . . . , l} → {1, . . . , m + l − 1}, bI is homogeneous of degree k + aI(1) + . . . + aI(l)

and g(aI) = bI .
Second, by linearity we may assume that M = K and f an element of the dual basis
of the standard basis of

⊗mU .
With these assumption the calculation becomes easy.

2. Graded coalgebras

Definition VIII.6. A coassociative Z-graded coalgebra is the data of a graded
vector space C = ⊕n∈ZCn ∈ G and of a coproduct ∆: C → C ⊗ C such that:
• ∆ is a morphism of graded vector spaces.
• (coassociativity) (∆⊗ IdC)∆ = (IdC ⊗∆)∆: C → C ⊗ C ⊗ C.

The coalgebra is called cocommutative if T∆ = ∆.

For simplicity of notation, from now on with the term graded coalgebra we intend a
Z-graded coassociative coalgebra.

Definition VIII.7. Let (C,∆) and (B,Γ) be graded coalgebras. A morphism of
graded coalgebras f : C → B is a morphism of graded vector spaces that commutes
with coproducts, i.e. Γf = (f ⊗ f)∆.
The category of graded coalgebras is denoted by GC.

Exercise VIII.8. A counity of a graded coalgebra is a morphism of graded vector
spaces ε : C → K such that (ε⊗ IdC)∆ = (IdC ⊗ ε)∆ = IdC .
Prove that if a counity exists, then it is unique (Hint: (ε⊗ ε′)∆ =?). �
Example VIII.9. Let C = K [t] be the polynomial ring in one variable t of even

degree. A coalgebra structure is given by

∆(tn) =
n∑

i=0

ti ⊗ tn−i.

We left to the reader the verification of the coassociativity, of the commutativity and
the existence of the counity.
If the degree of t is equal to 0, then for every sequence {fn}n>0 ⊂ K it is associated
a morphism of coalgebras f : C → C defined as

f(1) = 1, f(tn) =
n∑

s=1

∑
(i1,... ,is)∈Ns

i1+...+is=n

fi1fi2 . . . aist
s.

The verification that ∆f = (f ⊗ f)∆ can be done in the following way: Let {xn} ⊂
C∨ = K [[x]] be the dual basis of {tn}. Then for every a, b, n ∈ N we have:

〈xa ⊗ xb,∆f(tn)〉 =
∑

i1+...+ia+j1+...+jb=n

fi1 . . . fiafj1 . . . fjb
,

〈xa ⊗ xb, f ⊗ f∆(tn)〉 =
∑

s

∑
i1+...+ia=s

∑
j1+...+jb=n−s

fi1 . . . fiafj1 . . . fjb
.

Note that the sequence {fn}, n ≥ 1, can be recovered from f by the formula fn =
〈x, f(tn)〉.
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We shall prove later that every coalgebra endomorphism of K [t] has this form for
some sequence {fn}, n ≥ 1.

Lemma-Definition VIII.10. Let (C,∆) be a graded coassociative coalgebra, we de-
fine recursively ∆0 = IdC and, for n > 0, ∆n = (IdC ⊗ ∆n−1)∆: C → ⊗n+1 C.
Then:

1. For every 0 ≤ a ≤ n− 1 we have

∆n = (∆a ⊗∆n−1−a)∆: C →⊗n+1C,

aa+1,n−a∆n = (∆a ⊗∆n−1−a)∆

2. For every s ≥ 1 and every a0, . . . , as ≥ 0 we have

(∆a0 ⊗∆a1 ⊗ . . .⊗∆as)∆s = ∆s+
∑

ai .

In particular, if C is cocommutative then the image of ∆n−1 is contained in
the set of Σn-invariant elements of

⊗n C.
3. If f : (C,∆)→ (B,Γ) is a morphism of graded coalgebras then, for every n ≥ 1

we have

Γnf = (⊗n+1f)∆n : C →⊗n+1B.

Proof. [1] If a = 0 or n = 1 there is nothing to prove, thus we can assume a > 0
and use induction on n. we have:

(∆a ⊗∆n−1−a)∆ = ((IdC ⊗∆a−1)∆⊗∆n−1−a)∆ =

= (IdC ⊗∆a−1 ⊗∆n−1−a)(∆⊗ IdC)∆ =

= (IdC ⊗∆a−1 ⊗∆n−1−a)(IdC ⊗∆)∆ = (IdC ⊗ (∆a−1 ⊗∆n−1−a)∆)∆ = ∆n.

[2] Induction on s, being the case s = 1 proved in item 1. If s ≥ 2 we can write

(∆a0 ⊗∆a1 ⊗ . . .⊗∆as)∆s = (∆a0 ⊗∆a1 ⊗ . . .⊗∆as)(Id⊗∆s−1)∆ =

(∆a0 ⊗ (∆a1 ⊗ . . .⊗∆as)∆s−1)∆ = (∆a0 ⊗∆s−1+
∑

i>0 ai)∆ = ∆s+
∑

ai .

The action of Σn on
⊗n C is generated by the operators Ta = Id⊗a C ⊗ T ⊗

Id⊗n−a−2 C , 0 ≤ a ≤ n− 2, and, if T∆ = ∆ then

Ta∆n−1 = Ta(Id⊗a C ⊗∆⊗ Id⊗n−a−2 C)∆n−2 =

= (Id⊗a C ⊗∆⊗ Id⊗n−a−2 C)∆n−2 = ∆n−1.

[3] By induction on n,

Γnf = (IdB ⊗ Γn−1)Γf = (f ⊗ Γn−1f)∆ = (f ⊗ (⊗nf)∆n−1)∆ = (⊗n+1f)∆n.

Example VIII.11. Let A be a graded associative algebra with product µ : A⊗A→
A and C a graded coassociative coalgebra with coproduct ∆: C → C ⊗ C.
Then Hom∗(C, A) is a graded associative algebra with product

fg = µ(f ⊗ g)∆.

We left as an exercise the verification that the product in Hom∗(C, A) is associative.
In particular HomG(C, A) = Hom0(C, A) is an associative algebra and C∨ = Hom∗(C, K )
is a graded associative algebra. (Notice that in general A∨ is not a coalgebra.)
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Example VIII.12. The dual of the coalgebra C = K [t] (Example VIII.9) is exactly
the algebra of formal power series A = K [[x]] = C∨. Every coalgebra morphism
f : C → C induces a local homomorphism of K -algebras f t : A→ A. Clearly f t = 0
only if f = 0, f t is uniquely determined by f t(x) =

∑
n>0 fnxn and then every

morphism of coalgebras f : C → C is uniquely determined by the sequence fn =
〈f t(x), tn〉 = 〈x, f(tn)〉.
The map f �→ f t is functorial and then preserves the composition laws.

Definition VIII.13. A graded coassociative coalgebra (C,∆) is called nilpotent if
∆n = 0 for n >> 0.
It is called locally nilpotent if it is the direct limit of nilpotent graded coalgebras or
equivalently if C = ∪n ker ∆n.

Example VIII.14. The coalgebra K [t] of Example VIII.9 is locally nilpotent.

Example VIII.15. Let A = ⊕Ai be a finite dimensional graded associative com-
mutative K -algebra and let C = A∨ = Hom∗(A, K ) be its graded dual.
Since A and C are finite dimensional, the pairing 〈c1⊗c2, a1⊗a2〉 = (−1)a1 c2〈c1, a1〉〈c2, a2〉
gives a natural isomorphism C ⊗ C = (A ⊗ A)∨ commuting with the twisting maps
T ; we may define ∆ as the transpose of the multiplication map µ : A⊗A→ A.
Then (C,∆) is a coassociative cocommutative coalgebra. Note that C is nilpotent if
and only if A is nilpotent.

Exercise VIII.16. Let (C,∆) be a graded coalgebra and p : C → V a morphism
of graded vector spaces. We shall say that p cogenerates C if for every c ∈ C there
exists n ≥ 0 such that (⊗n+1p)∆n(c) �= 0 in

⊗n+1 V .
Prove that every morphism of graded coalgebras B → C is uniquely determined by
its composition B → C → V with a cogenerator p. �

2-A. The reduced tensor coalgebra. Given a graded vector space V , we
denote T (V ) =

⊕
n>0

⊗n V . When considered as a subset of T (V ) it becomes an
ideal of the tensor algebra generated by V .
The reduced tensor coalgebra generated by V is the graded vector space T (V ) endowed
with the coproduct a : T (V )→ T (V )⊗ T (V ),

a =
∞∑

n=1

n−1∑
a=1

aa,n−a, a(v1 ⊗ . . .⊗ vn) =
n−1∑
r=1

(v1 ⊗ . . .⊗ vr)⊗ (vr+1 ⊗ . . .⊗ vn)

The coalgebra (T (V ), a) is coassociative (but not cocommutative) and locally nilpo-
tent; in fact, for every s > 0,

a
s−1(v1 ⊗ . . .⊗ vn) =

∑
1≤i1<i2<...<is=n

(v1 ⊗ . . .⊗ vi1)⊗ . . .⊗ (vis−1+1 ⊗ . . .⊗ vis)

and then ker as−1 =
⊕s−1

n=1

⊗n V .
If µ :

⊗s T (V )→ T (V ) denotes the multiplication map then, for every v1, . . . , vn ∈
V , we have

µa
s−1(v1 ⊗ . . .⊗ vn) =

(
n− 1
s− 1

)
v1 ⊗ . . .⊗ vn.

For every morphism of graded vector spaces f : V → W the induced morphism of
graded algebras

T (f) : T (V )→ T (W ), T (f)(v1 ⊗ . . .⊗ vn) = f(v1)⊗ . . .⊗ f(vn)

is also a morphism of graded coalgebras.



2. GRADED COALGEBRAS 125

Exercise VIII.17. Let p : T (V )→ T (V ) be the projection with kernel K =
⊗0 V

and φ : T (V ) → T (V ) ⊗ T (V ) the unique homomorphism of graded algebras such
that φ(v) = v ⊗ 1 + 1⊗ v for every v ∈ V . Prove that pφ = ap. �

If (C,∆) is locally nilpotent then, for every c ∈ C, there exists n > 0 such that
∆n(c) = 0 and then it is defined a morphism of graded vector spaces

1
1−∆

=
∞∑

n=0

∆n : C → T (C).

Proposition VIII.18. Let (C,∆) be a locally nilpotent graded coalgebra, then:

1. The map
1

1−∆
=

∑
n≥0

∆n : C → T (C) is a morphism of graded coalgebras.

2. For every graded vector space V and every morphism of graded coalgebras
φ : C → T (V ), there exists a unique morphism of graded vector spaces f : C →
V such that φ factors as

φ = T (f)
1

1−∆
=

∞∑
n=1

(⊗nf)∆n−1 : C → T (C)→ T (V ).

Proof. [1] We have∑
n≥0

∆n

⊗
∑

n≥0

∆n

 ∆ =
∑
n≥0

n∑
a=0

(∆a ⊗∆n−a)∆

=
∑
n≥0

n∑
a=0

aa+1,n+1−a∆n+1 = a

∑
n≥0

∆n


where in the last equality we have used the relation a∆0 = 0.
[2] The unicity of f is clear, since by the formula φ = T (f)(

∑
n≥0 ∆n) it follows that

f is the composition of φ and the projection T (V )→ V .
To prove the existence of the factorization, take any morphism of graded coalgebras
φ : C → T (V ) and denote by φi : C →⊗iV the composition of φ with the projection.
It is sufficient to show that for every n > 1, φn is uniquely determined by φ1. Now,
the morphism condition aφ = (φ⊗φ)∆ composed with the projection T (V )⊗T (V )→⊕n−1

i=1 (
⊗i V ⊗⊗n−1 V ) gives the equality

aφn =
n−1∑
i=1

(φi ⊗ φn−i)∆, n ≥ 2.

Using induction on n, it is enough to observe that the restriction of a to
⊗n V is

injective for every n ≥ 2.

It is useful to restate part of the Proposition VIII.18 in the following form

Corollary VIII.19. Let V be a fixed graded vector space; for every locally nilpotent
graded coalgebra C the composition with the projection T (V )→ V induces a bijection

HomGC(C, T (V )) = HomG(C, V ).

When C is a reduced tensor coalgebra, Proposition VIII.18 takes the following more
explicit form
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Corollary VIII.20. Let U, V be graded vector spaces and p : T (V ) → V the pro-
jection. Given f : T (U)→ V , the linear map F : T (U)→ T (V )

F (v1 ⊗ . . .⊗ vn) =
n∑

s=1

∑
1≤i1<i2<...<is=n

f(v1 ⊗ . . .⊗ vi1)⊗ . . .⊗ f(vis−1+1 ⊗ . . .⊗ vis)

is the unique morphism of graded coalgebras such that pF = f .

Example VIII.21. Let A be an associative graded algebra. Consider the projection
p : T (A)→ A, the multiplication map µ : T (A)→ A and its conjugate

µ∗ = −µT (−1), µ∗(a1 ⊗ . . .⊗ an) = (−1)n−1µ(a1 ⊗ . . .⊗ an) = (−1)n−1a1a2 . . . an.

The two coalgebra morphisms T (A)→ T (A) induced by µ and µ∗ are isomorphisms,
the one inverse of the other.
In fact, the coalgebra morphism F : T (A)→ T (A)

F (a1 ⊗ . . .⊗ an) =
n∑

s=1

∑
1≤i1<i2<...<is=n

(a1a2 . . . ai1)⊗ . . .⊗ (ais−1+1 . . . ais)

is induced by µ (i.e. pF = µ), µ∗F (a) = a for every a ∈ A and for every n ≥ 2

µ∗F (a1 ⊗ . . .⊗ an) =
n∑

s=1

(−1)s−1
∑

1≤i1<i2<...<is=n

a1a2 . . . an =

=
n∑

s=1

(−1)s−1

(
n− 1
s− 1

)
a1a2 . . . an =

(
n−1∑
s=0

(−1)s

(
n− 1

s

))
a1a2 . . . an = 0.

This implies that µ∗F = p and therefore, if F ∗ : T (A)→ T (A) is induced by µ∗ then
pF ∗F = µ∗F = p and by Corollary VIII.19 F ∗F is the identity.

Exercise VIII.22. Let A be an associative graded algebra over the field K , for
every local homomorphism of K -algebras γ : K [[x]] → K [[x]], γ(x) =

∑
γnxn, we

can associate a coalgebra morphism Fγ : T (A)→ T (A) induced by the linear map

fγ : T (A)→ A, f(a1 ⊗ . . .⊗ an) = γna1 . . . an.

Prove the composition formula Fγδ = FδFγ . (Hint: Example VIII.12.) �

Exercise VIII.23. A graded coalgebra morphism F : T (U) → T (V ) is surjective
(resp.: injective, bijective) if and only if F 1

1 : U → V is surjective (resp.: injective,
bijective). �

2-B. The reduced symmetric coalgebra.

Definition VIII.24. The reduced symmetric coalgebra is by definition S(V ) =⊕
n>0

⊙n V , with the coproduct l =
∑

n

∑n−1
i=0 l

n+1
i+1 ,

l(v1 : . . .: vn) =
n−1∑
r=1

∑
I⊂{1,... ,n};|I|=r

ε

(
I, Ic

{1, . . . , n} ; v1, . . . , vn

)
vI ⊗ vIc .

The verification that l is a coproduct is an easy consequence of Lemma VIII.4. In
fact, the injective map N : S(V ) → T (V ) satisfies the equality aN = (N ⊗ N)l and
then N is an isomorphism between (S(V ), l) and the subcoalgebra of symmetric ten-
sors of (T (V ), a).
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Remark VIII.25. It is often convenient to think the symmetric algebra as a quo-
tient of the tensor algebra and the symmetric coalgebra as a subset of the tensor
coalgebra.

The coalgebra S(V ) is coassociative without counity. It follows from the definition
of l that V = ker l and T l = l, where T is the twisting map; in particular (S(V ), l) is
cocommutative. For every morphism of graded vector spaces f : V → W , the mor-
phism S(f) : S(V )→ S(W ) is a morphism of graded coalgebras.

If (C,∆) is any cocommutative graded coalgebra, then the image of ∆n is contained
in the subspace of symmetric tensors and therefore

1
1−∆

= N ◦ e∆ − 1
∆

,

where
e∆ − 1

∆
=

∞∑
n=1

π

n!
∆n−1 : C → S(C).

Proposition VIII.26. Let (C,∆) be a cocommutative locally nilpotent graded coal-
gebra, then:

1. The map
e∆ − 1

∆
: C → S(C) is a morphism of graded coalgebras.

2. For every graded vector space V and every morphism of graded coalgebras
φ : C → S(V ), there exists a unique factorization

φ = S(φ1)
e∆ − 1

∆
=

∞∑
n=1

⊙n φ1

n!
∆n−1 : C → S(C)→ S(V ),

where φ1 : C → V is a morphism of graded vector spaces f : C → V . (Note
that φ1 is the composition of φ and the projection S(V )→ V .)

Proof. Since N is an injective morphism of coalgebras and
1

1−∆
= N ◦ e∆ − 1

∆
,

the proof follows immediately from Proposition VIII.18.

Corollary VIII.27. Let C be a locally nilpotent cocommutative graded coalgebra,
and V a graded vector space. A morphism θ ∈ HomG(C,S(V )) is a morphism of
graded coalgebras if and only if there exists m ∈ HomG(C, V ) ⊂ HomG(C,S(V ))
such that

θ = exp(m)− 1 =
∞∑

n=1

1
n!

mn,

being the n-th power of m is considered with respect to the algebra structure on
HomG(C,S(V )) (Example VIII.11).

Proof. An easy computation gives the formula mn = (
⊙nm)∆n−1 for the prod-

uct defined in Example VIII.11.

Exercise VIII.28. Let V be a graded vector space. Prove that the formula

c(v1 ∧ . . . ∧ vn) =
n−1∑
r=1

∑
σ∈S(r,n−r)

(−1)σε(σ)(vσ(1) ∧ . . . ∧ vσ(r))⊗ (vσ(r+1) ∧ . . . ∧ vσ(n)),

where (−1)σ is the signature of the permutation σ, defines a coproduct on
∧

(V ) =⊕
n>0

∧n V . The resulting coalgebra is called reduced exterior coalgebra generated
by V . �
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3. Coderivations

Definition VIII.29. Let (C,∆) be a graded coalgebra. A linear map d ∈ Homn(C, C)
is called a coderivation of degree n if it satisfies the coLeibnitz rule

∆d = (d⊗ IdC + IdC ⊗ d)∆.

A coderivation d is called a codifferential if d2 = d ◦ d = 0.
More generally, if θ : C → D is a morphism of graded coalgebras, a morphism of
graded vector spaces d ∈ Homn(C, D) is called a coderivation of degree n (with
respect to θ) if

∆Dd = (d⊗ θ + θ ⊗ d)∆C .

In the above definition we have adopted the Koszul sign convention: i.e. if x, y ∈ C,
f, g ∈ Hom∗(C, D), h, k ∈ Hom∗(B, C) are homogeneous then (f ⊗ g)(x ⊗ y) =
(−1)g xf(x)⊗ g(y) and (f ⊗ g)(h⊗ k) = (−1)g hfh⊗ gk.

The coderivations of degree n with respect a coalgebra morphism θ : C → D form a
vector space denoted Codern(C, D; θ).
For simplicity of notation we denote Codern(C, C) = Codern(C, C; Id).

Lemma VIII.30. Let C
θ−→D

ρ−→E be morphisms of graded coalgebras. The compo-
sitions with θ and ρ induce linear maps

ρ∗ : Codern(C, D; θ)→ Codern(C, E; ρθ), f �→ ρf ;

θ∗ : Codern(D, E; ρ)→ Codern(C, E; ρθ), f �→ fθ.

Proof. Immediate consequence of the equalities

∆Eρ = (ρ⊗ ρ)∆D, ∆Dθ = (θ ⊗ θ)∆C .

Exercise VIII.31. Let C be a graded coalgebra and d ∈ Coder1(C, C) a codiffer-
ential of degree 1. Prove that the triple (L, δ, [, ]), where:

L =
⊕
n∈Z

Codern(C, C), [f, g] = fg − (−1)g fgf, δ(f) = [d, f ]

is a differential graded Lie algebra. �

Lemma VIII.32. Let V, W be graded vector spaces, f ∈ HomG(V, W ) and g ∈
Homm(S(V ), W ). Then the morphism d ∈ Homm(S(V ), S(W )) defined by the rule

d(v1 : . . .: vn) =
∑

∅�=I⊂{1,... ,n}
ε

(
I, Ic

{1, . . . , n} ; v1, . . . , vn

)
g(vI): S(f)(vIc)

is a coderivation of degree m with respect to the morphism of graded coalgebras
S(f) : S(V )→ S(W ).

Proof. Let v1, v2, . . . , vn be fixed homogeneous elements of V , we need to prove
that

ld(v1 : . . .: vn) = (d⊗ S(f) + S(f)⊗ d)l(v1 : . . .: vn).
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If A ⊂ W is the image of f and B ⊂ W is the image of g, it is not restrictive to
assume that W = A⊕B: in fact we can always factorize

V

(f,0) ��										
f























A⊕B
+ �� W

S(V )

(0,g)
�����������

g

���������������������

and apply Lemma VIII.30 to the coalgebra morphism S(+): S(A⊕B)→ S(W ).
Under this assumption we have (S(A)B ⊗ S(A)) ∩ (S(A) ⊗ S(A)B) = ∅ and the
image of d is contained in S(A)B ⊂ S(A⊕B). Therefore the images of ld and
(d⊗ S(f) + S(f)⊗ d)l are both contained in (S(A)B ⊗ S(A))⊕ (S(A)⊗ S(A)B).
Denoting by p : S(W ) ⊗ S(W ) → S(A)B ⊗ S(A) the natural projection induced by
the decomposition W = A⊕B, since both the operators ld and (d⊗S(f)+S(f)⊗d)l
are invariant under the twisting map, it is sufficient to prove that

pld(v1 : . . .: vn) = p(d⊗ S(f))l(v1 : . . .: vn).

We have (all Koszul signs are referred to v1, . . . , vn)

pld(v1 : . . .: vn) = pl

 ∑
∅�=J⊂{1,... ,n}

ε

(
J, Jc

{1, . . . , n}

)
g(vJ): S(f)(vJc)

 =

=
∑

∅�=J⊂I⊂{1,... ,n}
ε

(
J, Jc

{1, . . . , n}

)
ε

(
J, I − J, Ic

J, Jc

)
g(vJ): S(f)(vI−J)⊗ S(f)(vIc) =

=
∑

∅�=J⊂I⊂{1,... ,n}
ε

(
J, I − J, Ic

{1, . . . , n}

)
g(vJ): S(f)(vI−J)⊗ S(f)(vIc).

On the other hand

p(d⊗ S(f))l(v1 : . . .: vn) = p(d⊗ S(f))

(∑
I

ε

(
I, Ic

{1, . . . , n}

)
vI ⊗ vIc

)
=

=
∑
J⊂I

ε

(
I, Ic

{1, . . . , n}

)
ε

(
J, I − J, Ic

I, Ic

)
g(vJ): S(f)(vI−J)⊗ S(f)(vIc) =

=
∑
J⊂I

ε

(
J, I − J, Ic

{1, . . . , n}

)
g(vJ): S(f)(vI−J)⊗ S(f)(vIc).

Proposition VIII.33. Let V be a graded vector space and C a locally nilpotent
cocommutative coalgebra. Then for every coalgebra morphism θ : C → S(V ) and
every integer n, the composition with the projection S(V )→ V gives an isomorphism

Codern(C,S(V ); θ)→ Homn(C, V ) = HomG(C, V [n]).
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Proof. The injectivity is proved essentially in the same way as in Proposi-
tion VIII.18: if d ∈ Codern(C,S(V ); θ) we denote by θi, di : C →⊙iV the composi-
tion of θ and d with the projection S(V )→⊙iV . The coLeibnitz rule is equivalent
to the countable set of equalities

l
i
ad

i = da ⊗ θi−a + θa ⊗ di−a, 0 < a < i.

Induction on i and the injectivity of

l :
n⊕

m=2

⊙mV →⊗2 (
n−1⊕
m=1

⊙mV )

show that d is uniquely determined by d1.
For the surjectivity, consider g ∈ Homn(C, V ); according to Proposition VIII.26 we

can write θ = S(θ1)
e∆ − 1

∆
and, by Lemma VIII.32, the map d = δ

e∆ − 1
∆

, where

δ : S(C)→ S(V ) is given by

δ(c1 : . . .: cn) =
∑

i∈{1,... ,n}
ε

( {i}, {i}c
{1, . . . , n} ; c1, . . . , cn

)
g(ci): S(θ1)(c{i}c)

is a coderivation of degree n with respect to θ that lifts g.

Corollary VIII.34. Let V be a graded vector space, S(V ) its reduced symmetric
coalgebra. The application Q �→ Q1 gives an isomorphism of vector spaces

Codern(S(V ), S(V )) = Homn(S(V ), V )

whose inverse is given by the formula

Q(v1 : . . .: vn) =
n∑

k=1

∑
σ∈S(k,n−k)

ε(σ)Q1
k(vσ(1) : . . .: vσ(k)): vσ(k+1) : . . .: vσ(n).

In particular for every coderivation Q we have Qi
j = 0 for every i > j and then the

subcoalgebras
⊕r

i=1

⊙i V are preserved by Q.

Proof. The isomorphism follows from Proposition VIII.33, while the inverse
formula comes from Lemma VIII.32.



CHAPTER IX

L∞ and EDF tools

In this chapter we introduce the category L∞ of L∞-algebras and we define a se-
quence of natural transformations

DGLA→ L∞ → PreDef → Def

whose composition is the functor L �→ DefL (cf. V.66).
In all the four categories there is a notion of quasi-isomorphism which is preserved
by the above natural transformations: we recall that in the category Def quasi-
isomorphism means isomorphism in tangent spaces and then by Corollary V.72 every
quasi-isomorphism is an isomorphism.
Through all the chapter we work over a fixed field K of characteristic 0. Unless
otherwise specified all the tensor products are made over K .

1. Displacing (Décalage)

For every n and every graded vector space V , the twisting map gives a natural
isomorphism

dpn :
⊗n(V [1])→ (

⊗n)V [n], V [a] = K [a]⊗ V

dpn(v1[1]⊗ . . .⊗ vn[1]) = (−1)
∑n

i=1(n−i) deg(vi;V )(v1 ⊗ . . .⊗ vn)[n], v[a] = 1[a]⊗ v.

It is easy to verify that dpn, called the displacing1 isomorphism, changes symmetric
into skewsymmetric tensors and therefore it induces an isomorphism

dpn :
⊙n(V [1])→ (

∧nV )[n],

dpn(v1[1]: . . .: vn[1]) = (−1)
∑n

i=1(n−i) deg(vi;V )(v1 ∧ . . . ∧ vn)[n].

2. DG-coalgebras and L∞-algebras

Definition IX.1. By a dg-coalgebra we intend a triple (C,∆, d), where (C,∆) is
a graded coassociative cocommutative coalgebra and d ∈ Coder1(C, C) is a codif-
ferential. If C has a counit ε : C → K , we assume that εd = 0. The category of
dg-coalgebras, where morphisms are morphisms of coalgebras commuting with cod-
ifferentials, is denoted by DGC.

Example IX.2. If A is a finite dimensional dg-algebra with differential d : A→ A[1],
then A∨ (Example VIII.15) is a dg-coalgebra with codifferential the transpose of d.

Marco Manetti: Lectures on deformations of complex manifolds
1It is often used the french name décalage.
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Lemma IX.3. Let V be a graded vector space and Q ∈ Coder1(S(V ), S(V )). Then
Q is a codifferential, i.e. Q ◦ Q = 0, if and only if for every n > 0 and every
v1, . . . , vn ∈ V∑
k+l=n+1

∑
σ∈S(k,n−k)

ε(σ; v1, . . . , vn)Q1
l (Q

1
k(vσ(1): . . .: vσ(k)): vσ(k+1): . . .: vσ(n)) = 0.

Proof. Denote P = Q ◦ Q = 1
2 [Q, Q]: since P is a coderivation we have that

P = 0 if and only if P 1 = Q1 ◦Q = 0. According to Corollary VIII.34

Q(v1 : . . .: vn) =
∑

I⊂{1,... ,n}
ε

(
I, Ic

{1, . . . , n}

)
Q1(vI): vIc

and then

P 1(v1 : . . .: vn) =
∑

I⊂{1,... ,n}
ε

(
I, Ic

{1, . . . , n}

)
Q1(Q1(vI): vIc).

Note that P 1
n = 0 whenever Q1

m = 0 for every m ≥ n + 1
2

and, if Q is a codifferential

in S(V ) then Q1
1 is a differential in the graded vector space V .

Definition IX.4. Let V be a graded vector space; a codifferential of degree 1 on
the symmetric coalgebra C(V ) = S(V [1]) is called an L∞-structure on V . The dg-
coalgebra (C(V ), Q) is called an L∞-algebra.
An L∞-algebra (C(V ), Q) is called minimal if Q1

1 = 0.

Definition IX.5. A weak morphism F : (C(V ), Q)→ (C(W ), R) of L∞-algebras is
a morphism of dg-coalgebras. By an L∞-morphism we always intend a weak mor-
phism of L∞-algebras.
A weak morphism F is called a strong morphism if there exists a morphism of graded
vector spaces F 1

1 : V →W such that F = S(F 1
1 ).

We denote by L∞ the category having L∞-algebras as objects and (weak) L∞-
morphisms as arrows.

Consider now two L∞-algebras (C(V ), Q), (C(W ), R) and a morphism of graded
coalgebras F : C(V ) → C(W ). Since FQ − RF ∈ Coder1(C(V ), C(W );F ), we have
that F is an L∞-morphism if and only if F 1Q = R1F .

Lemma IX.6. Consider two L∞-algebras (C(V ), Q), (C(W ), R) and a morphism of
graded vector spaces F 1 : C(V )→W [1]. Then

F = S(F 1)
el− 1

l
: (C(V ), Q)→ (C(W ), R)

is an L∞-morphism if and only if
n∑

i=1

R1
i F

i
n =

n∑
i=1

F 1
i Qi

n(4)

for every n > 0.

Proof. According to Proposition VIII.26 F is a morphism of coalgebras. Since
FQ−RF ∈ Coder1(C(V ), C(W );F ), we have that F is an L∞-morphism if and only
if F 1Q = R1F .
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Exercise IX.7. An L∞-morphism F is strong if and only if F 1
n = 0 for every

n ≥ 2. �
If F : (C(V ), Q) → (C(W ), R) is an L∞-morphism, then by Lemma IX.6 R1

1F
1
1 =

F 1
1 Q1

1 and therefore we have a morphism in cohomology H(F 1
1 ) : H∗(V [1], Q1

1) →
H∗(W [1], Q1

1).

Definition IX.8. An L∞-morphism F : (C(V ), Q)→ (C(W ), R) is a quasiisomor-
phism if H(F 1

1 ) : H∗(V [1], Q1
1)→ H∗(W [1], Q1

1) is an isomorphism.

The following exercise shows that the above definition is not ambiguous.

Exercise IX.9. An L∞-morphism F : (C(V ), Q) → (C(W ), R) is a quasiisomor-
phism if and only if H(F ) : H∗(C(V ), Q)→ H∗(C(W ), R) is an isomorphism. �

Given a coderivation Q : S(V [1])→ S(V [1])[1], their components Q1
j :

⊙n(V [1])→
V [2], composed with the inverse of the displacement isomorphism, give linear maps

lj = (Q1
j ◦ dp−1

n )[−n] :
∧nV → V [2− n].

More explicitly

lj(v1 ∧ . . . ∧ vn) = (−1)−n(−1)
∑n

i=1(n−i) deg(vi;V )Q1
j (v1[1]: . . .: vn[1])

The conditions of Lemma IX.3 become∑
k+i=n+1

σ∈S(k,n−k) (−1)k(i−1)

(−1)σε(σ)li(lk(vσ(1) ∧ . . . ∧ vσ(k)) ∧ vσ(k+1) ∧ . . . ∧ vσ(n)) = 0.

Setting l1(v) = d(v) and l2(v1 ∧ v2) = [v1, v2], the first three conditions (n = 1, 2, 3)
becomes:

1 : d2 = 0

2 : d[x, y] = [dx, y] + (−1)x[x, dy]

3 : (−1)x z[[x, y], z] + (−1)y z[[z, x], y] + (−1)x y[[y, z], x] =

= (−1)x z+1(dl3(x, y, z) + l3(dx, y, z) + (−1)xl3(x, dy, z) + (−1)x+yl3(x, y, dz))

If l3 = 0 we recognize, in the three formulas above, the axioms defining a differential
graded Lie algebra structure on V .

Exercise IX.10. Let (C(V ), Q) be an L∞-algebra. Then the bracket

[w1, w2] = (−1)deg(w1;V )Q1
2(w1[1]: w2[1]) = l2(w1 ∧ w2)

gives a structure of graded Lie algebra on the cohomology of the complex (V, Q1
1). �

3. From DGLA to L∞-algebras

In this section we show that to every DGLA structure on a graded vector space V
it is associated naturally a L∞ structure on the same space V , i.e. a codifferential Q
on C(V ) = S(V [1]).
The coderivation Q is determined by its components Q1

j :
⊙j V [1]→ V [2].

Proposition IX.11. Let (V, d, [ , ]) be a differential graded Lie algebra. Then the
coderivation Q of components

1. Q1
1(v[1]) = −d(v).

2. Q1
2(w1[1]: w2[1]) = (−1)deg(w1;V )[w1, w2]
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3. Q1
j = 0 for every j ≥ 3.

is a codifferential and then gives an L∞-structure on V .

Proof. The conditions of Lemma IX.3 are trivially satisfied for every n > 3. For
n ≤ 3 they becomes (where x̂ = x[1] and x = deg(x;V )):

n = 1 : Q1
1Q

1
1(v̂) = d2(v) = 0

n = 2 : Q1
1Q

1
2(x̂: ŷ) + Q1

2(Q
1
1(x̂): ŷ) + (−1)(x−1)(y−1)Q1

2(Q
1
1(ŷ): x̂) =

= −(−1)x(d[x, y]− [dx, y]) + [x, dy] = 0

n = 3 : Q1
2(Q

1
2(x̂: ŷ): ẑ) + (−1)x−1Q1

2(x̂:Q1
2(ŷ : ẑ))+

+(−1)x(y−1)Q1
2(ŷ :Q1

2(x̂: ẑ)) =

= (−1)y[[x, y], z] + (−1)y−1[x, [y, z]] + (−1)(x−1)y[x, [y, z]] = 0

It is also clear that every morphism of DGLA f : V →W induces a strong morphism
of the corresponding L∞-algebras S(f [1]) : C(V )→ C(W ). Therefore we get in this
way a functor

DGLA→ L∞

that preserves quasiisomorphisms.
This functor is faithful; the following example, concerning differential graded Lie al-
gebras arising from Gerstenhaber-Batalin-Vilkovisky algebras, shows that it is not
fully faithful.

Let (A,∆) be a GBV-algebra (Section VII.6); we have seen that (G[−1], [ , ],∆),
where

[a, b] = a∆(b) + (−1)deg(a,G[−1])(∆(ab)−∆(a)b)

is a differential graded Lie algebra and then it makes sense to consider the associated
L∞-algebra (C(G[−1]), δ) = (S(G), δ). The codifferential δ is induced by the linear
map of degree 1 δ1 = ∆ + Q ∈ Hom1

K
(S(G), G), where δ1

1 = ∆ and

δ1
2 = Q :

⊙2G→ G, Q(a: b) = ∆(ab)−∆(a)b− (−1)aa∆(b)

Lemma IX.12. In the notation above,

∆(a1a2 . . . am) =
∑

σ∈S(1,m−1)

ε(σ; a1, . . . , am)∆(aσ1)aσ2 . . . aσm +

+
∑

σ∈S(2,m−2)

ε(σ; a1, . . . , am)Q(aσ1 , aσ2)aσ3 . . . aσm

for every m ≥ 2 and every a1, . . . , am ∈ G.

Proof. For m = 2 the above equality becomes

∆(ab) = ∆(a)b + (−1)aa∆(b) + Q(a: b)

which is exactly the definition of Q.
By induction on m we may assume the Lemma true for all integers < m and then

∆((a1a2)a3 . . . am) =
m∑

i=1

(−1)a1+...+ai−1a1 . . .∆(ai)ai+1 . . . am+

+
∑
i≥3

ε Q(a1a2 : ai)a3 . . . âi . . . am +
∑

2<i<j

ε Q(ai : aj)a1a2 . . . âi . . . âj . . . am.
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Replacing the odd Poisson identity

Q(a1a2 : ai) = (−1)a1a1Q(a2 : ai) + (−1)(a1+1)a2a2Q(a1 : ai)

in the above formula, we obtain the desired equality.

As an immediate consequence we have

Theorem IX.13. In the notation above, let (C(G[−1]), τ) be the (abelian) L∞-
algebra whose codifferential is induced by ∆: G → G. Then the morphism of graded
vector spaces f : S(G)→ G,

f(a1 : . . .: am) = a1a2 . . . am

induces an isomorphism of L∞-algebras F : (C(G[−1]), δ)→ (C(G[−1]), τ).

Proof. According to Lemmas IX.6 and IX.12 the morphism of graded coalgebras
induced by f is an L∞-morphism.
Moreover, according to Example VIII.21 F is an isomorphism of graded coalgebras
whose inverse is induced by

g : S(G)→ G, g(a1 : . . .: am) = (−1)m−1a1a2 . . . am.

4. From L∞-algebras to predeformation functors

Let Q ∈ Coder1(C(V ), C(V )) be a L∞ structure on a graded vector space V , we
define the Maurer-Cartan functor MCV : NA→ Set by setting:

MCV (A) = HomDGC(A∨, C(V )).

We first note that the natural isomorphism

(C(V )⊗A)0 = HomG(A∨, C(V )), (v ⊗ a)c = c(a)v

is an isomorphism of algebras and then, according to Corollary VIII.27, every coal-
gebra morphism θ : A∨ → C(V ) is written uniquely as θ = exp(m) − 1 for some
m ∈ (V [1] ⊗ A)0 = HomG(A∨, V [1]). As in Lemma IX.6, θ is a morphism of dg-
coalgebras if and only if mdA∨ = Q1θ; considering m as an element of the algebra
(C(V )⊗A)0 this equality becomes the Maurer-Cartan equation of an L∞-structure:

(IdV [1] ⊗ dA)m =
∞∑

n=1

1
n!

(Q1
n ⊗ IdA)mn, m ∈ (V [1]⊗A)0.

Via the décalage isomorphism the Maurer-Cartan equation becomes

IdV ⊗ dA(m) =
∞∑

n=1

1
n!

(−1)
n(n+1)

2 (ln ⊗ IdA)m ∧ . . . ∧m, m ∈ (V ⊗A)1.

It is then clear that if the L∞ structure comes from a DGLA V (i.e. ln = 0 for every
n ≥ 3) then the Maurer-Cartan equation reduces to the classical one.

It is evident that MCV is a covariant functor and MCV (0) = 0. Let α : A → C,
β : B → C be morphisms in NA, then

MCV (A×C B) = MCV (A)×MCV (C) MCV (B)

and therefore MCV satisfies condition 2) of Definition V.59; in particular it makes
sense the tangent space TMCV .

Proposition IX.14. The functor MCV is a predeformation functor with T iMCV =
H i−1(V [1], Q1

1).
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Proof. If A ∈ NA ∩DG then

MCV (A) = {m ∈ (V ⊗A)1 | IdV ⊗ dA(m) = −l1 ⊗ IdA(m)} = Z1(V ⊗A)

the same computation of V.66 shows that there exists a natural isomorphism T iMCV =
H i(V, l1) = H i−1(V [1], Q1

1).
Let 0−→I−→A−→B−→0 be a small acyclic extension in NA, we want to prove that
MCV (A)→MCV (B) is surjective.
We have a dual exact sequence

0−→B∨−→A∨−→I∨−→0, B∨ = I⊥.

Since IA = 0 we have ∆A∨(A∨) ⊂ B∨ ⊗B∨.
Let φ ∈ MCV (B) be a fixed element and φ1 : B∨ → V [1]; by Proposition VIII.26 φ
is uniquely determined by φ1. Let ψ1 : A∨ → V [1] be an extension of φ1, then, again
by VIII.26, ψ1 is induced by a unique morphism of coalgebras ψ : A∨ → C(V ).
The map ψdA∨−Qψ : A∨ → C(V )[1] is a coderivation and then, setting h = (ψdI∨−
Qψ)1 ∈ HomG(I∨, V [2]), we have that ψ is a morphism of dg-coalgebras if and only
if h = 0.
Note that ψ1 is defined up to elements of HomG(I∨, V [1]) = (V [1] ⊗ I)0 and, since
∆A∨(A∨) ⊂ B∨ ⊗ B∨, ψi depends only by φ for every i > 1. Since I is acyclic and
hdI∨ + Q1

1h = 0 there exists ξ ∈ HomG(I∨, V [1]) such that h = ξdI∨ −Q1
1ξ and then

θ1 = ψ1 − ξ induces a dg-coalgebra morphism θ : A∨ → C(V ) extending φ.

Therefore the Maurer-Cartan functor can be considered as a functor L∞ → PreDef
that preserves quasiisomorphisms. We have already noted that the composition
DGLA→ L∞ → PreDef is the Maurer-Cartan functor of DGLAs.

5. From predeformation to deformation functors

We first recall the basics of homotopy theory of dg-algebras.
We denote by K [t1, . . . , tn, dt1, . . . , dtn] the dg-algebra of polynomial differential

forms on the affine space An with the de Rham differential. We have K [t, dt] =
K [t]⊕K [t]dt and

K [t1, . . . , tn, dt1, . . . , dtn] =
⊗
i=1

n
K [ti, dti].

Since K has characteristic 0, it is immediate to see that H∗(K [t, dt]) = K [0] and
then by Künneth formula H∗(K [t1, . . . , tn, dt1, . . . , dtn]) = K [0]. Note that for every
dg-algebras A and every s = (s1, . . . , sn) ∈ K n we have an evaluation morphism

es : A⊗K [t1, . . . , tn, dt1, . . . , dtn]→ A

defined by

es(a⊗ p(t1, . . . , tn, dt1, . . . , dtn)) = p(s1, . . . , sn, 0, . . . , 0)a

For every dg-algebra A we denote A[t, dt] = A ⊗ K [t, dt]; if A is nilpotent then
A[t, dt] is still nilpotent. If A ∈ NA, then A[t, dt] is the direct limit of objects in
NA. To see this it is sufficient to consider, for every positive real number ε > 0, the
dg-subalgebra

A[t, dt]ε = A⊕⊕n>0(A�nε tn ⊕A�nε tn−1dt) ⊂ A[t, dt],

where A�nε is the subalgebra generated by all the products a1a2 . . . as, s ≥ nε, ai ∈ A.
It is clear that if A ∈ NA then A[t, dt]ε ∈ NA for every ε > 0 and A[t, dt] is the

union of all A[t, dt]ε, ε > 0.

Lemma IX.15. For every dg-algebra A the evaluation map eh : A[t, dt]→ A induces
an isomorphism H(A[t, dt])→ H(A) independent from h ∈ K .
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Proof. Let ı : A → A[t, dt] be the inclusion, since ehı = IdA it is sufficient to
prove that ı : H(A)→ H(A[t, dt]) is bijective.
For every n > 0 denote Bn = Atn ⊕ Atn−1dt; since d(Bn) ⊂ Bn and A[t, dt] =
ı(A)

⊕
n>0 Bn it is sufficient to prove that H(Bn) = 0 for every n. Let z ∈ Zi(Bn),

z = atn + nbtn−1dt, then 0 = dz = datn + ((−1)ia + db)ntn−1dt which implies
a = (−1)i−1db and then z = (−1)i−1d(btn).

Definition IX.16. Given two morphisms of dg-algebras f, g : A→ B, a homotopy
between f and g is a morphism H : A → B[t, dt] such that H0 := e0 ◦ H = f ,
H1 := e1 ◦H = g (cf. [27, p. 120]).
We denote by [A, B] the quotient of HomDGA(A, B) by the equivalence relation ∼
generated by homotopies.

According to Lemma IX.15, homotopic morphisms induce the same morphism in
homology.

Lemma IX.17. Given morphisms of dg-algebras,

A

f


g
�� B

h


l

�� C ,

if f ∼ g and h ∼ l then hf ∼ lg.

Proof. It is obvious from the definitions that hg ∼ lg. For every a ∈ K there
exists a commutative diagram

B ⊗K [t, dt]
h⊗Id ��

ea

��

C ⊗K [t, dt]

ea

��
B

h �� C

.

If F : A→ B[t, dt] is a homotopy between f and g, then, considering the composition
of F with h⊗ Id, we get a homotopy between hf and hg.

Since composition respects homotopy equivalence we can also consider the homotopy
categories K(DGA) and K(NA). By definition, the objects of K(DGA) (resp.:
K(NA)) are the same of DGA (resp.: NA), while the morphisms are Mor(A, B) =
[A, B].
If A, B ∈ DG ∩NA, then two morphisms f, g : A→ B are homotopic in the sense

of IX.16 if and only if f is homotopic to g as morphism of complexes. In particular
every acyclic complex is contractible as a dg-algebra.

Lemma IX.18. A predeformation functor F : NA → Set is a deformation functor
if and only if F induces a functor [F ] : K(NA)→ Set.

Proof. One implication is trivial, since every acyclic I ∈ NA∩DG is isomorphic
to 0 in K(NA).
Conversely, let H : A → B[t, dt] be a homotopy, we need to prove that H0 and
H1 induce the same morphism from F (A) to F (B). Since A is finite-dimensional
there exists ε > 0 sufficiently small such that H : A → B[t, dt]ε; now the evaluation
map e0 : B[t, dt]ε → B is a finite composition of acyclic small extensions and then,
since F is a deformation functor F (B[t, dt]ε) = F (B). For every a ∈ F (A) we have
H(a) = iH0(a), where i : B → B[t, dt]ε is the inclusion and then H1(a) = e1H(a) =
e1iH0(a) = H0(a).
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Theorem IX.19. Let F be a predeformation functor, then there exists a deforma-
tion functor F+ and a natural transformation η : F → F+ such that:

1. η is a quasiisomorphism.
2. For every deformation functor G and every natural transformation φ : F → G

there exists a unique natural transformation ψ : F+ → G such that φ = ψη.

Proof. We first define a functorial relation ∼ on the sets F (A), A ∈ NA; we
set a ∼ b if and only if there exists ε > 0 and x ∈ F (A[t, dt]ε) such that e0(x) = a,
e1(x) = b. By IX.18 if F is a deformation functor then a ∼ b if and only if a = b.
Therefore if we define F+ as the quotient of F by the equivalence relation generated
by ∼ and η as the natural projection, then there exists a unique ψ as in the statement
of the theorem. We only need to prove that F+ is a deformation functor.
Step 1: If C ∈ DG ∩NA is acyclic then F+(C) = {0}.

Since C is acyclic there exists a homotopy H : C → C[t, dt]ε, ε ≤ 1, such that H0 = 0,
H1 = Id; it is then clear that for every x ∈ F (C) we have x = H1(x) ∼ H0(x) = 0.
Step 2: ∼ is an equivalence relation on F (A) for every A ∈ NA.

This is essentially standard (see e.g. [27]). In view of the inclusion A→ A[t, dt]ε the
relation ∼ is reflexive. The symmetry is proved by remarking that the automorphism
of dg-algebras

A[t, dt]→ A[t, dt]; a⊗ p(t, dt) �→ a⊗ p(1− t,−dt)

preserves the subalgebras A[t, dt]ε for every ε > 0.
Consider now ε > 0 and x ∈ F (A[t, dt]ε), y ∈ F (A[s, ds]ε) such that e0(x) = e0(y);

we need to prove that e1(x) ∼ e1(y).
Write K [t, s, dt, ds] = ⊕n≥0S

n, where Sn is the n-th symmetric power of the acyclic

complex K t⊕K s
d−→K dt⊕K ds and define A[t, s, dt, ds]ε = A⊕⊕n>0(A�nε ⊗ Sn).

There exists a commutative diagram

A[t, s, dt, ds]ε
t!→0−→ A[s, ds]ε�s !→0

�s !→0

A[t, dt]ε
t!→0−→ A

The kernel of the surjective morphism

A[t, s, dt, ds]ε
η−→A[t, dt]ε ×A A[t, dt]ε

is equal to ⊕n>0(A�nε ⊗ (Sn ∩ I)), where I ⊂ K [t, s, dt, ds] is the homogeneous
differential ideal generated by st, sdt, tds, dtds. Since I ∩ Sn is acyclic for every
n > 0, the morphism η is a finite composition of acyclic small extensions.
Let ξ ∈ F (A[t, s, dt, ds]ε) be a lifting of (x, y) and let z ∈ F (A[u, du]ε) be the image

of ξ under the morphism

A[t, s, dt, ds]ε → A[u, du]ε, t �→ 1− u, s �→ u

The evaluation of z gives e0(z) = e1(x), e1(z) = e1(y).
Step 3: If α : A→ B is surjective then

F (A[t, dt]ε)
(e0,α)−→ F (A)×F (B) F (B[t, dt]ε)

is surjective.

It is not restrictive to assume α a small extension with kernel I. The kernel of (e0, α)
is equal to ⊕n>0(A�nε ∩I)⊗(K tn⊕K tn−1dt) and therefore (e0, α) is an acyclic small
extension.



5. FROM PREDEFORMATION TO DEFORMATION FUNCTORS 139

Step 4: The functor F+ satisfies 2a of V.59.

Let a ∈ F (A), b ∈ F (B) be such that α(a) ∼ β(b); by Step 3 there exists a′ ∼ a,
a′ ∈ F (A) such that α(a′) = β(b) and then the pair (a′, b) lifts to F (A×C B).
Step 5: The functor F+ satisfies 2b of V.59.

By V.60 it is sufficient to verify the condition separately for the cases C = 0 and
B = 0. When C = 0 the situation is easy: in fact (A×B)[t, dt]ε = A[t, dt]ε×B[t, dt]ε,
F ((A × B)[t, dt]ε) = F (A[t, dt]ε) × F (B[t, dt]ε) and the relation ∼ over F (A × B) is
the product of the relations ∼ over F (A) and F (B); this implies that F+(A×B) =
F+(A)× F+(B).
Assume now B = 0, then the fibred product D := A ×C B is equal to the kernel

of α. We need to prove that the map F+(D) → F+(A) is injective. Let a0, a1 ∈
F (D) ⊂ F (A) and let x ∈ F (A[t, dt]ε) be an element such that ei(x) = ai, i = 0, 1.
Denote by x ∈ F (C[t, dt]ε) the image of x by α.
Since C is acyclic there exists a morphism of graded vector spaces σ : C → C[−1]

such that dσ + σd = Id and we can define a morphism of complexes

h : C → (K s⊕K ds)⊗ C ⊂ C[s, ds]1; h(v) = s⊗ v + ds⊗ σ(v)

The morphism h extends in a natural way to a morphism

h : C[t, dt]ε → (K s⊕K ds)⊗ C[t, dt]ε

such that for every scalar ζ ∈ K there exists a commutative diagram

C[t, dt]ε
h−→ (K s⊕K ds)⊗ C[t, dt]ε�eζ

�Id⊗eζ

C
h−→ (K s⊕K ds)⊗ C

Setting z = h(x) we have z|s=1 = x, z|s=0 = z|t=0 = z|t=1 = 0. By step 3 z lifts to
an element z ∈ F (A[t, dt]ε[s, ds]1) such that z|s=1 = x; Now the specializations z|s=0,
z|t=0, z|t=1 are annihilated by α and therefore give a chain of equivalences in F (D)

a0 = z|s=1,t=0 ∼ z|s=0,t=0 ∼ z|s=0,t=1 ∼ z|s=1,t=1 = a1

proving that a0 ∼ a1 inside F (D).
The combination of Steps 1, 4 and 5 tell us that F+ is a deformation functor.

Step 6: The morphism η : F → F+ is a quasiisomorphism.
Let ε be of degree 1− i, ε2 = 0, then K ε⊕ Ii is isomorphic to the dg-subalgebra

K ε⊕K εt⊕K εdt ⊂ K ε[t, dt]

and the map p : F (Ii)→ F (K ε) factors as

p : F (Ii) ↪→ F (Ii)⊕ F (K ε) = F (K ε⊕K εt⊕K εdt)
e1−e0 �� F (K ε).

On the other hand the evaluation maps e0, e1 factor as

ei : K ε[t, dt] h−→K ε⊕K εt⊕K εdt
ei−→K ε, i = 0, 1

where h is the morphism of dg-vector spaces

h(εtn+1) = εt, h(εtndt) =
εdt

n + 1
, ∀n ≥ 0.
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Corollary IX.20. Let L be a differential graded Lie algebra, then there exists a
natural isomorphism MC+

L = DefL.

Proof. According to Theorem IX.19 there exists a natural morphism of functors
ψ : MC+

L → DefL; by V.66 ψ is a quasiisomorphism and then, by Corollary V.72 ψ
is an isomorphism.

Definition IX.21. Let (C(V ), Q) be a L∞-algebra and let DefV = MC+
V be the

deformation functor associated to the predeformation functor MCV . We shall call
DefV the deformation functor associated to the L∞-algebra (C(V ), Q).

A morphism of L∞-algebras C(V ) → C(W ) induces in the obvious way a natural
transformation MCV → MCW and then, according to IX.19, a morphism DefV →
DefW . Finally, since MCV → DefV is a quasiisomorphism we have T iDefV =
H i(V, Q1

1).
The following result is clear.

Corollary IX.22. Let θ : C(V ) → C(W ) be a morphism of L∞-algebras. The
induced morphism DefV → DefW is an isomorphism if and only if θ1

1 : V → W is a
quasiisomorphism of complexes.

6. Cohomological constraint to deformations of Kähler manifolds

Theorem IX.13 shows that the category of L∞-algebras is more flexible than the
category of differential graded Lie algebras. Another example in this direction is
given by the main theorem of [54].
Let X be a fixed compact Kähler manifold of dimension n and consider the graded

vector space MX = Hom∗
C
(H∗(X, C), H∗(X, C)) of linear endomorphisms of the sin-

gular cohomology of X. The Hodge decomposition gives natural isomorphisms

MX =
⊕
i

M i
X , M i

X =
⊕

r+s=p+q+i
HomC(Hp(Ωq

X), Hr(Ωs
X))

and the composition of the cup product and the contraction operator TX⊗Ωp
X

�−→Ωp−1
X

gives natural linear maps

θp : Hp(X, TX)→⊕
r,s

Hom∗
C(Hr(Ωs

X), Hr+p(Ωs−1
X )) ⊂M [−1]pX = Mp−1

X .

By Dolbeault’s theorem H∗(KSX) = H∗(X, TX) and then the maps θp give a mor-
phism of graded vector spaces θ : H∗(KSX)→M [−1]X . This morphism is generally
nontrivial: consider for instance a Calabi-Yau manifold where the map θp induces an
isomorphism Hp(X, TX) = HomC(H0(Ωn

X), Hp(Ωn−1
X )).

Theorem IX.23. In the above notation, consider M [−1]X as a differential graded
Lie algebra with trivial differential and trivial bracket.
Every choice of a Kähler metric on X induces a canonical lifting of θ to an L∞-
morphism from KSX to M [−1]X .

The application of Theorem IX.23 to deformation theory, see [54], are based on the
idea that L∞-morphisms induce natural transformations of (extended) deformation
functors commuting with tangential actions and obstruction maps (cf. Theorem
V.69). Being the deformation functor of the DGLA M [−1] essentially trivial, the
lifting of θ impose several constraint on deformations of X.
Denote by:
• A∗,∗ =

⊕
p,q Ap,q, where Ap,q = Γ(X,Ap,q) the vector space of global (p, q)-

forms.
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• N∗,∗ = Hom∗
C
(A∗,∗, A∗,∗) =

⊕
p,q Np,q, where Np,q =

⊕
i,j Hom∗

C
(Ai,j , Ai+p,j+q)

is the space of homogeneous endomorphisms of A∗,∗ of bidegree (p, q).
The space N∗,∗, endowed with the composition product and total degree deg(φ) =

p + q whenever φ ∈ Np,q, is a graded associative algebra and therefore, with the
standard bracket

[φ, ψ] = φψ − (−1)deg(φ) deg(ψ)ψφ

becomes a graded Lie algebra. We note that the adjoint operator [∂, ] : N∗,∗ → N∗,∗+1

is a differential inducing a structure of DGLA.

Lemma IX.24. Let X be a compact Kähler manifold, then there exists τ ∈ N1,−1

such that:
1. τ factors to a linear map A∗,∗/ ker ∂ → Im ∂.
2. [∂, τ ] = ∂.

In particular ∂ ∈ N1,0 is a coboundary in the DGLA (N∗,∗, [ , ], [∂, ]).

Proof. In the notation of Theorem VI.37 it is sufficient to consider τ = σ∂ =
−∂σ. Note that the above τ is defined canonically from the choice of the Kähler
metric.

We fix a Kähler metric on X and denote by: H ⊂ A∗,∗ the graded vector space of
harmonic forms, i : H → A∗,∗ the inclusion and h : A∗,∗ → H the harmonic projector.
We identify the graded vector space MX with the space of endomorphisms of har-

monic forms Hom∗
C
(H,H). We also we identify Der∗(A∗,∗,A∗,∗) with its image into

N = Hom∗
C
(A∗,∗, A∗,∗).

According to Lemma IX.24 there exists τ ∈ N0 such that

h∂ = ∂h = τh = hτ = ∂τ = τ∂ = 0, [∂, τ ] = ∂.

For simplicity of notation we denote by L = ⊕Lp the Z-graded vector space KS[1]X ,
this means that Lp = Γ(X,A0,p+1(TX)), −1 ≤ p ≤ n−1. The local description of the
two linear maps of degree +1, d : L→ L, Q : :2 L→ L introduced, up to décalage,
in Proposition IX.11 is: if z1, . . . , zn are local holomorphic coordinates, then

d

(
φ

∂

∂zi

)
= (∂φ)

∂

∂zi
, φ ∈ A0,∗.

If I, J are ordered subsets of {1, . . . , n}, a = fdzI
∂

∂zi
, b = gdzJ

∂

∂zj
, f, g ∈ A0,0 then

Q(a: b) = (−1)adzI ∧ dzJ

(
f

∂g

∂zi

∂

∂zj
− g

∂f

∂zj

∂

∂zi

)
, a = deg(a, L).

The formula

δ(a1 : . . .: am) =
∑

σ∈S(1,m−1)

ε(L, σ; a1, . . . , am)daσ1 : aσ2 : . . .: aσm +

+
∑

σ∈S(2,m−2)

ε(L, σ; a1, . . . , am)Q(aσ1 : aσ2): aσ3 : . . .: aσm

(5)

gives a codifferential δ of degree 1 on S(L) and the differential graded coalgebra
(S(L), δ) is exactly the L∞-algebra associated to the Kodaira-Spencer DGLA KSX .
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If Derp(A∗,∗,A∗,∗) denotes the vector space of C-derivations of degree p of the sheaf
of graded algebras (A∗,∗,∧), where the degree of a (p, q)-form is p + q (note that
∂, ∂ ∈ Der1(A∗,∗,A∗,∗)), then we have a morphism of graded vector spaces

L
ˆ−→Der∗(A∗,∗,A∗,∗) =

⊕
p

Derp(A∗,∗,A∗,∗), a �→ â

given in local coordinates by

̂
φ

∂

∂zi
(η) = φ ∧

(
∂

∂zi
8 η

)
.

Lemma IX.25. If [ , ] denotes the standard bracket on Der∗(A∗,∗,A∗,∗), then for
every pair of homogeneous a, b ∈ L we have:

1. d̂a = [∂, â] = ∂â− (−1)aâ∂.

2. ̂Q(a: b) = −[[∂, â], b̂] = (−1)aâ∂b̂ + (−1)a b+b b̂∂â± ∂âb̂± b̂â∂.

Proof. This is a special case of Lemma VII.21.

Consider the morphism

F1 : L→MX , F1(a) = hâi.

We note that F1 is a morphism of complexes, in fact F1(da) = hd̂ai = h(∂â±â∂)i = 0.
By construction F1 induces the morphism θ in cohomology and therefore the theorem
is proved whenever we lift F1 to a morphism of graded vector spaces F : S(L)→MX

such that F ◦ δ = 0.

Define, for every m ≥ 2, the following morphisms of graded vector spaces

fm :
⊗mL→MX , Fm :

⊙mL→MX , F =
∞∑

m=1

Fm : S(L)→MX ,

fm(a1 ⊗ a2 ⊗ . . .⊗ am) = hâ1τ â2τ â3 . . . τ âmi.

Fm(a1 : a2 : . . .: am) =
∑

σ∈Σm

ε(L, σ; a1, . . . , am)fm(aσ1 ⊗ . . .⊗ aσm).

Theorem IX.26. In the above notation F ◦ δ = 0 and therefore

Θ =
∞∑

m=1

1
m!

F"m ◦∆m−1
C(KSX) : (C(KSX), δ)→ (C(M [−1]X), 0)

is an L∞-morphism with linear term F1.

Proof. We need to prove that for every m ≥ 2 and a1, . . . , am ∈ L we have

Fm

 ∑
σ∈S(1,m−1)

ε(L, σ)daσ1 : aσ2 : . . .: aσm

 =

= −Fm−1

 ∑
σ∈S(2,m−2)

ε(L, σ)Q(aσ1 : aσ2): aσ3 : . . .: aσm

 ,

where ε(L, σ) = ε(L, σ; a1, . . . , am).
It is convenient to introduce the auxiliary operators q :

⊗2 L → N [1], q(a ⊗ b) =
(−1)aâ∂b̂ and gm :

⊗m L→M [1]X ,

gm(a1 ⊗ . . .⊗ am) = −
m−2∑
i=0

(−1)a1+a2+...+aihâ1τ . . . âiτq(ai+1 ⊗ ai+2)τ âi+3 . . . τ âmi.
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Since for every choice of operators α = h, τ and β = τ, i and every a, b ∈ L we have

α ̂Q(a: b)β = α((−1)aâ∂b̂ + (−1)a b+bb̂∂â)β = α(q(a⊗ b) + (−1)a bq(b⊗ a))β,

the symmetrization lemma VIII.5 gives∑
σ∈Σm

ε(L, σ)gm(aσ1 ⊗ . . .⊗ aσm) = −Fm−1

 ∑
σ∈S(2,m−2)

ε(L, σ)Q(aσ1 : aσ2): aσ3 : . . .: aσm

 .

On the other hand

fm

(
m−1∑
i=0

(−1)a1+...+aia1 ⊗ . . .⊗ ai ⊗ dai+1 ⊗ . . .⊗ am

)
=

=
m−1∑
i=0

(−1)a1+...+aihâ1 . . . âiτ(∂âi+1 − (−1)ai+1 âi+1∂)τ . . . τ âmi

=
m−2∑
i=0

(−1)a1+...+aihâ1 . . . âiτ(−(−1)ai+1 âi+1∂τ âi+2 + (−1)ai+1 âi+1τ∂âi+2)τ . . . τ âmi

= −
m−2∑
i=0

(−1)a1+...+aihâ1 . . . âiτ((−1)ai+1 âi+1[∂, τ ]âi+2)τ . . . τ âmi

= −
m−2∑
i=0

(−1)a1+...+aihâ1 . . . âiτq(ai+1 ⊗ ai+2)τ . . . τ âmi

= gm(a1 ⊗ . . .⊗ am).

Using again Lemma VIII.5 we have∑
σ∈Σm

ε(L, σ)gm(aσ1 ⊗ . . .⊗ aσm) = Fm

 ∑
σ∈S(1,m−1)

ε(L, σ)daσ1 : aσ2 : . . .: aσm

 .

Remark. If X is a Calabi-Yau manifold with holomorphic volume form Ω, then the
composition of F with the evaluation at Ω induces an L∞-morphism C(KSX) →
C(H[n− 1]).
For every m ≥ 2, evΩ ◦Fm :

⊙m L→ H[n] vanishes on
⊙m{a ∈ L | ∂(a 8 Ω) = 0}.

7. Historical survey, IX

L∞-algebras, also called strongly homotopy Lie algebras, are the Lie analogue of
the A∞ ( strongly homotopy associative algebras), introduced by Stasheff [74] in the
context of algebraic topology.
The popularity of L∞-algebras has been increased recently by their application in de-
formation theory (after [68]), in deformation quantization (after [44]) and in string
theory (after [82], cf. also [47]).
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