Exercises

Exercise 1.48. Let $A = \{1, 2, 4, 6\}$, $B = \{3, 2, 5\}$ and $C = \{2, 5, 10\}$. Find the follow*ing sets:*

 (1) $A \cup B$. (2) $A \cap B$. (3) $A - B$. (4) $B - A$. (5) $(B \cup C) - A$. (6) $(A \cup C) \cap B$. (7) $\mathscr{P}(B)$.

Exercise 1.49. *Let A*, *B*, *C be sets. Show the following, first using Venn diagrams, and then with a more careful proof.*

(1) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. (2) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. (3) $A - (B \cap C) = (A - B) \cup (A - C)$. (4) $A - (B \cup C) = (A - B) \cap (A - C)$. (5) If $B, C \subseteq A$, show $(B \cap C)^C = B^C \cup C^C$. (6) If $B, C \subseteq A$, show $(B \cup C)^C = B^C \cap C^C$.

Exercise 1.50. *Let J and A be sets. For each* $j \in J$ *, let B_i be a set. Show the following:*

(1)
$$
A \cup \left(\bigcap_{j \in J} B_j\right) = \bigcap_{j \in J} (A \cup B_j).
$$

\n(2) $A \cap \left(\bigcup_{j \in J} B_j\right) = \bigcup_{j \in J} (A \cap B_j).$
\n(3) $A - \left(\bigcap_{j \in J} B_j\right) = \bigcup_{j \in J} (A - B_j).$
\n(4) $A - \left(\bigcup_{j \in J} B_j\right) = \bigcap_{j \in J} (A - B_j).$
\n(5) If $B_j \subseteq A$ for all j, then show $\left(\bigcap_{j \in J} B_j\right)^C = \bigcup_{j \in J} B_j^C.$
\n(6) If $B_j \subseteq A$ for all j, then show $\left(\bigcup_{j \in J} B_j\right)^C = \bigcap_{j \in J} B_j^C.$

Exercise 1.51. Let A and B be sets. Show that if $a_1, a_2 \in A$ and $b_1, b_2 \in B$, then $(a_1, b_1) = (a_2, b_2)$ *if and only if* $a_1 = a_2$ *and* $b_1 = b_2$ *.*

Exercise 1.52. *For each set u, the expression* $u \neq u$ *is a statement. Call this statement*

$$
p(u):u\neq u.
$$

Use this and the separation condition for sets to show that if there exists a set S, then there exists an empty set ∆*.*

Exercise 1.53. *Let X be a set of sets. Show that there is a set*

so that

$$
u \in \bigcup X \iff \exists z \ (z \in X \ \land \ u \in z);
$$

in other words $u \in \bigcup X$ *if and only if u is an element of an element of* X.

Exercise 1.54. *Let X be a set of sets. We saw above that there is a set*

 $|$ $|$ $|$ $|$

so that

$$
u \in \bigcup X \iff \exists z (z \in X \land u \in z).
$$

Show that if A and B are sets, then

$$
A \cup B = \bigcup \{A, B\}.
$$

More generally, show that if Ai are a collection of sets indexed by a set I, then

$$
\bigcup_{i\in I}A_i=\bigcup\{A_i:i\in I\}.
$$

Exercise 1.55. Let A, B, C be sets, and let $f : A \rightarrow B$ and $g : B \rightarrow C$ be maps. Show that *the set*

$$
\Gamma_{g \circ f} := \{ (a, c) \in A \times C : \text{there exists } b \in B \text{ such that } (a, b) \in \Gamma_f, (b, c) \in \Gamma_g \}.
$$

defines a map $g \circ f : A \to C$ *. Show also that* $(g \circ f)(a) = g(f(a))$ *.*

Exercise 1.56. *Given a set A, there is an identity map* $\mathrm{Id}_A : A \to A$ *sending a* \mapsto *a. We will also use the notation* 1*^A for the identity map.*

Exercise 1.57. *Show that a map* $f : A \rightarrow B$ *is a bijection if and only if there exists a map* $g : B \to A$ *such that* $g \circ f = \text{Id}_A$ *and* $f \circ g = \text{Id}_B$.

Exercise 1.58. *Show that if a map f* : $A \rightarrow B$ *admits a section, then f is a surjective map.*

Exercise 1.59. *Suppose that* $f : A \rightarrow B$ *is a map of sets, and let* $C \subseteq A$ *. True or False. If the statement is true, give a proof. If the statement is false, provide a counter example.*

- (a) *True or false:* $f(A C) \subseteq f(A) f(C)$ *.*
- (b) *True or false:* $f(A) f(C) \subseteq f(A C)$ *.*
- (c) *True or false: If f is injective, then* $f(A C) = f(A) f(C)$ *.*
- (d) *True or false: If f is bijective, then* $f(A C) = B f(C)$ *.*

Exercise 1.60. *Given an equivalence relation* \sim *on a set A, show that the equivalence classes of elements in A give a partition of A. Conversely, given a set A and a partition* $A = \bigsqcup_{i \in I} A_i$, show that the rule $x \sim y$ if and only if $x, y \in A_i$ for some $i \in I$ defines *an equivalence relation on A. Show this defines a bijection between the set of equivalence relations on A and the set of partitions of A.*

Exercise 1.61. *Define a relation on* $\mathbb{N} \times \mathbb{N}$ *by the rule that for all* (a, b) *,* $(c, d) \in \mathbb{N} \times \mathbb{N}$ *,*

$$
(a,b)\sim(c,d)\iff a+d=b+c.
$$

- (1) *Show that* \sim *is an equivalence relation.*
- (2) *Show that if* $(a, b) \sim (a', b')$ *and* $(c, d) \sim (c', d')$ *then*

$$
(a+c,b+d)\sim (a'+c',b'+d').
$$

(3) *Show that if* $(a, b) \sim (a', b')$ *and* $(c, d) \sim (c', d')$ *then* $(ac + bd, bc + ad) \sim (a'c' + b'd', b'c' + a'd').$

(4) Let
$$
Z = (N \times N) / \sim
$$
. Show that there is a map

$$
+ : Z \times Z \to Z
$$

defined by $[(a, b)] + [(c, d)] = [(a + c, b + d)].$

(5) Let $Z = (\mathbb{N} \times \mathbb{N}) / \sim$ *. Show that there is a map*

 \cdot : $Z \times Z \rightarrow Z$

defined by $[(a, b)] \cdot [(c, d)] = [(ac + bd, bc + ad)].$

- (6) Let $0_Z := [(1, 1)]$ *. Show that for all* $z \in Z$, $0_Z + z = z$ *.*
- (7) For all $z \in Z$, show that there exists $z' \in Z$ such that $z' + z = 0_Z$.
- (8) *For all* $x, y, z \in Z$ *, show that* $(x + y) + z = x + (y + z)$ *.*
- (9) For all $x, y \in Z$, show that $x + y = y + x$.
- (10) Let $1_Z = [(1, 0)]$ *. Show that for all* $z \in Z$, $1_Z \cdot z = z$ *.*
- (11) *For all* $x, y \in Z$ *, show that* $x \cdot y = y \cdot x$ *.*
- (12) *For all* $x, y, z \in Z$ *, show that* $x \cdot (y + z) = x \cdot y + x \cdot z$.