CHAPTER 6

Vector spaces and linear maps

In what follows, fix $K \in \{Q, \mathbb{R}, \mathbb{C}\}$. More generally, *K* can be any field.

1. Vector spaces

Definition 6.1. *A vector space over K consists of a triple* $(V, +, \cdot)$ *, where V is a set, and* $+ : V \times V \rightarrow V$ *and* $\cdot : K \times V \rightarrow V$ *are maps, satisfying the following properties:*

- (1) *(Group laws)*
	- (a) *(Additive identity)* There exists an element $O \in V$ such that for all $v \in V$, $v + O = v$;
	- (b) *(Additive inverse)* For each $v \in V$ there exists an element $-v \in V$ such *that* $v + (-v) = O$;
	- (c) (Associativity of addition) For all $v_1, v_2, v_3 \in V$,

$$
(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3);
$$

- (2) *(Abelian property)*
	- (a) *(Commutativity of addition) For all* $v_1, v_2 \in V$,

$$
v_1+v_2=v_2+v_1;
$$

- (3) *(Module conditions)*
	- (a) *For all* $\lambda \in K$ *and all* $v_1, v_2 \in V$,

$$
\lambda \cdot (v_1 + v_2) = (\lambda \cdot v_1) + (\lambda \cdot v_2).
$$

(b) *For all* $\lambda_1, \lambda_2 \in K$ *, and all* $v \in V$ *,*

$$
(\lambda_1 + \lambda_2) \cdot v = (\lambda_1 \cdot v) + (\lambda_2 \cdot v).
$$

(c) *For all* $\lambda_1, \lambda_2 \in K$ *, and all* $v \in V$ *,*

$$
(\lambda_1 \lambda_2) \cdot v = \lambda_1 \cdot (\lambda_2 \cdot v).
$$

(d) For all $v \in V$,

$$
1\cdot v=v.
$$

In the above, for all $\lambda \in K$ *and all* $v, v_1, v_2 \in V$ *we have denoted* $+(v_1, v_2)$ *by* $v_1 + v_2$ *and* \cdot (λ, v) *by* $\lambda \cdot v$ *.*

In addition, for brevity, we will often write λv for $\lambda \cdot v$. EXAMPLE 6.2 (The vector space K^n). By definition,

 $K^n = \{(x_1, \ldots, x_n) : x_i \in K, 1 \le i \le n\}.$

The map $+: K^n \times K^n \to K^n$ is defined by the rule

$$
(x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)
$$

for all $(x_1,...,x_n)$, $(y_1,..., y_n) \in K^n$. The map $\cdot : K \times K^n \to K^n$ is defined by the rule

$$
\lambda \cdot (x_1, \ldots, x_n) = (\lambda x_1, \ldots, \lambda x_n)
$$

for all $\lambda \in K$ and $(x_1, \ldots, x_n) \in K^n$.

Exercise 6.3. *Show that* $(K^n, +, \cdot)$ *, defined in the example above, is a vector space.*

Exercise 6.4. Find an example of a triple $(V, +, \cdot)$ satisfying all of the conditions of the *definition of a K-vector space, except for condition (3)(d).*

Exercise 6.5. *Let* $(V, +, \cdot)$ *be a vector space. Show that if* $v \in V$ *satisfies* $v' + v = v'$ *for all* $v' \in V$ *, then* $v = O$ *, the additive identity.*

Exercise 6.6. Let $(V, +, \cdot)$ be a vector space. Let $v \in V$. Fix an element $(-v) \in V$ such *that* $v + (-v) = O$. Suppose that there is $w \in V$ such that $v + w = O$. Show that $w = (-v)$.

Exercise 6.7. *Show the following properties hold for all v,* $v_1, v_2 \in V$ *and all* λ , $\lambda_1, \lambda_2 \in$ *K.*

 (1) $0v = 0$. (2) $\lambda O = O$. (3) $(-\lambda)v = -(\lambda v) = \lambda(-v)$. (4) If $\lambda v = 0$, then either $\lambda = 0$ or $v = 0$. (5) If $\lambda v_1 = \lambda v_2$, then either $\lambda = 0$ or $v_1 = v_2$. (6) If $\lambda_1 v = \lambda_2 v$, then either $\lambda_1 = \lambda_2$ or $v = 0$. $(7) - (v_1 + v_2) = (-v_1) + (-v_2).$ (8) $v + v = 2v$, $v + v + v = 3v$, and in general $\sum_{i=1}^{n} v = nv$.

exeMAP **Exercise 6.8.** *Consider the set of maps from a set S to K. Let us denote this set by* Map(*S*, *K*)*. Define addition and multiplication maps*

$$
+: \mathrm{Map}(S, K) \times \mathrm{Map}(S, K) \to \mathrm{Map}(S, K)
$$

and

$$
\cdot: K \times \text{Map}(S, K) \to \text{Map}(S, K)
$$

in the following way. For all $f, g \in \text{Map}(S, K)$ *, set* $f + g$ to be the function defined *by* $(f+g)(x) = f(x) + g(x)$ *for all* $x \in S$ *. For all* $\lambda \in K$ *and all* $f \in \text{Map}(S, K)$ *, set* $\lambda \cdot f$ *to be the function defined by* $(\lambda \cdot f)(x) = \lambda f(x)$ *for all* $x \in S$ *.* Show that $(Map(S, K), +, \cdot)$ is a vector space.

2. Sub-*K***-vector spaces**

Definition 6.9 (sub-K-vector space). Let $(V, +, \cdot)$ be a K-vector space. A sub-K*vector space* of $(V, +, \cdot)$ *is a K-vector space* $(V', +', \cdot')$ *such that* $V' \subseteq V$ *and such* that for all $v', v'_1, v'_2 \in V'$ and all $\lambda \in K$,

$$
v'_1 +' v'_2 = v'_1 + v'_2 \quad \text{and} \quad \lambda \cdot' v' = \lambda \cdot v'.
$$

Definition 6.10. *If* $(V, +, \cdot)$ *is a K-vector space, and* $V' \subseteq V$ *is a subset, we say that* V' *is closed under* + (resp. closed under \cdot) *if for all* $v'_1, v'_2 \in V'$ (resp. for all $\lambda \in K$ and all $v' \in V'$) we have $v'_1 + v'_2 \in V'$ (resp. $\lambda \cdot v' \in V'$). In this case, we define

$$
+|_{V'}:V'\times V'\to V'
$$

 $(r \exp \cdot |_{V'} : K \times V' \to V')$ to be the map given by $v'_1 + |_{V'} v'_2 = v'_1 + v'_2$ (resp. $\lambda \cdot |_{V'} v' = v'_1 + v'_2$) $\lambda \cdot v'$), for all $v'_1, v'_2 \in V'$ (resp. for all $\lambda \in K$ and all $v' \in V'$).

REMARK 6.11. Note that if $(V', +', \cdot')$ is a sub-*K*-vector space of $(V, +, \cdot)$, then V' is closed under + and *·*.

Exercise 6.12. *Show that if a non-empty subset* $V' \subseteq V$ *is closed under* + *and* \cdot *, then* $(V', +|_{V'}, \cdot|_{V'})$ *is a sub-K-vector space of* $(V, +, \cdot)$ *.*

Exercise 6.13. *Show that if* $(V', +', \cdot')$ *is a sub-K-vector space of a K-vector space* $(V, +, \cdot)$ *, then the additive identity element* $O' \in V'$ *is equal to the additive identity element* $O \in V$.

Exercise 6.14. *Recall the* **R***-vector space* (Map(**R**, **R**), +, *·*) *from Exercise 6.8. In this exercise, show that the subsets of* $\text{Map}(\mathbb{R}, \mathbb{R})$ *listed below are closed under* $+$ *and* \cdot *, and so define sub-K-vector spaces of* $(Map(R, R), +, \cdot)$ *.*

- (1) *The set of all polynomial functions.*
- (2) *The set of all polynomial functions of degree less than n.*
- (3) *The set of all functions that are continuos on an interval* $(a, b) \subseteq \mathbb{R}$ *.*
- (4) *The set of all functions differentiable at a point* $a \in \mathbb{R}$ *.*
- (5) *The set of all functions differentiable on an interval* $(a, b) \subseteq \mathbb{R}$ *.*
- (6) *The set of all functions with* $f(1) = 0$ *.*
- (7) The set of all solutions to the differential equation $f'' + af' + bf = 0$ for some $a, b \in \mathbb{R}$.

Exercise 6.15. *In this exercise, show that the subsets of* Map(**R**, **R**) *listed below are NOT closed under* $+$ *and* \cdot *, and so do not define sub-K-vector spaces of* $(Map(\mathbb{R}, \mathbb{R}), +, \cdot)$ *.*

- (1) *Fix* $a \in \mathbb{R}$ *with* $a \neq 0$ *. The set of all functions with* $f(1) = a$ *.*
- (2) *The set of all solutions to the differential equation* $f'' + af' + bf = c$ *for some* $a, b, c \in \mathbb{R}$ *with* $c \neq 0$ *.*

3. Linear maps

Definition 6.16 (Linear map). Let $(V, +, \cdot)$ and $(V', +', \cdot')$ be K-vector spaces. A lin $ear\ map\ F:(V,+,\cdot)\rightarrow(V',+',\cdot')\ is\ a\ map\ of\ sets$

$$
f: V \to V'
$$

such that for all $\lambda \in K$ *and v*, $v_1, v_2 \in V$,

$$
f(v_1 + v_2) = f(v_1) + f(v_2) \quad \text{and} \quad f(\lambda \cdot v) = \lambda \cdot f(v).
$$

Note that we will frequently use the same letter for the linear map and the map of sets. The *K*-vector space $(V, +, \cdot)$ is called the **source** (or domain) of the linear map and the *K*-vector space $(V', +', \cdot')$ is called the **target** (or codomain) of the linear map. The set $f(V) \subseteq V'$ is called the **image** (or range) of *f*.

Exercise 6.17. Let $f : (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of K-vector spaces. Show that the image of f is closed under $+^{\prime}$, \cdot^{\prime} , and so defines a sub-K-vector space of the target $(V', +', \cdot').$

Exercise 6.18. Let $f : (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of K-vector spaces. Show *that* $f(O) = O'.$

exlinexa **Exercise 6.19.** *Show that the following maps of sets define linear maps of the K-vector spaces.*

- (1) Let $(V, +, \cdot)$ be a K-vector space. Show that the identity map $f: V \to V$, given *by* $f(v) = v$ for all $v \in V$, is a linear map. This linear map will frequently be *denoted by* Id*V.*
- (2) Let $(V, +, \cdot)$ and $(V', +', \cdot')$ be K-vector spaces. Show that the zero map f: $V \rightarrow V'$, given by $f(v) = O'$ for all $v \in V$, is a linear map.
- (3) Let $(V, +, \cdot)$ be a K-vector space and let $\alpha \in K$. Show that the multiplication *map* $f: V \to V$ given by $f(v) = \alpha \cdot v$ for all $v \in V$ is a linear map. This linear *map will frequently be denoted by a* Id*V.*
- (4) Let $a_{ij} \in K$ for $1 \le i \le m$ and $1 \le j \le n$. Show that the map $f: K^n \to K^m$ *given by*

$$
f(x_1,\ldots,x_n)=\left(\sum_{j=1}^n a_{1j}x_j,\ldots,\sum_{j=1}^n a_{ij}x_j,\ldots,\sum_{j=1}^n a_{mj}x_j\right)
$$

is a linear map.

- (5) Let $(V, +, \cdot)$ be the \mathbb{R} -vector space of all differentiable real functions $g : \mathbb{R} \to \mathbb{R}$. Let $(V', +', \cdot')$ be the K-vector space of all real functions $g : \mathbb{R} \to \mathbb{R}$. Show that the map $f:(V,+,\cdot)\to (V',+',\cdot')$ that sends a differentiable function g to its *derivative g*0 *is a linear map.*
- (6) Let $(V, +, \cdot)$ be the R-vector space of all continuous real functions $f : \mathbb{R} \to \mathbb{R}$. *Show that the map* $f : (V, +, \cdot) \to (V, +, \cdot)$ *that sends a function* $g \in V$ *to the function* $f(g) \in V$ determined by

$$
f(g)(x) := \int_a^x g(t)dt \text{ for all } x \in \mathbb{R}
$$

is a linear map. Make sure to show that $f(g) \in V$ *for all* $g \in V$ *.*

Definition 6.20 (Kernel). Let $f : (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of K-vector *spaces. The kernel of* f *(or Null space of* f *), denoted* $\ker(f)$ *(or Null* (f) *), is the set*

$$
\ker(f) := f^{-1}(O') = \{ v \in V : f(v) = O' \}.
$$

Exercise 6.21. Let $f : (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of K-vector spaces. Show *that* $\ker(f)$ *is a sub-K-vector space of* $(V, +, \cdot)$ *.*

Exercise 6.22. *Find the kernel of each of the linear maps listed below (see Problem 6.19).*

- (1) *The linear map* Id_V .
- (2) *The zero map* $V \rightarrow V'$.
- (3) *The linear map* α Id_V.
- (4) Let $a_{ij} \in K$ for $1 \le i \le m$ and $1 \le j \le n$. The linear map $f: K^n \to K^m$ defined *by*

$$
f(x_1,\ldots,x_n)=\left(\sum_{j=1}^n a_{1j}x_j,\ldots,\sum_{j=1}^n a_{ij}x_j,\ldots,\sum_{j=1}^n a_{mj}x_j\right).
$$

- (5) Let $(V, +, \cdot)$ be the R-vector space of all differentiable real functions $g : \mathbb{R} \to \mathbb{R}$. Let $(V', +', \cdot')$ be the K-vector space of all real functions $g : \mathbb{R} \to \mathbb{R}$. The linear $map f : (V, +, \cdot) \rightarrow (V', +', \cdot')$ that sends a differentiable function g to its derivative g'.
- (6) Let $(V, +, \cdot)$ be the R-vector space of all continous real functions $g : \mathbb{R} \to \mathbb{R}$. *The linear map f* : $(V, +, \cdot) \rightarrow (V, +, \cdot)$ *that sends a function* $g \in V$ *to the*

function $f(g) \in V$ determined by

$$
f(g)(x) := \int_a^x g(t)dt \text{ for all } x \in \mathbb{R}.
$$

Exercise 6.23. *Show that the composition of linear maps is a linear map.*

Definition 6.24 (Isomorphism). Let $f : (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of K*vector spaces. We say that f is an isomorphism of K-vector spaces if there is a linear map* $g:(V', +', \cdot') \to (V, +, \cdot)$ of K-vector spaces such that

$$
g \circ f = \mathrm{Id}_{(V,+,\cdot)} \quad \text{and} \quad f \circ g = \mathrm{Id}_{(V',+',\cdot')}.
$$

Exercise 6.25. *Show that a linear map is an isomorphism if and only if it is bijective.*