
CHAPTER 6

Vector spaces and linear maps

In what follows, fix K 2 {Q, R, C}. More generally, K can be any field.

1. Vector spaces

Definition 6.1. A vector space over K consists of a triple (V,+, ·), where V is a set,
and + : V ⇥ V ! V and · : K ⇥ V ! V are maps, satisfying the following properties:

(1) (Group laws)
(a) (Additive identity) There exists an element O 2 V such that for all v 2 V,

v + O = v;
(b) (Additive inverse) For each v 2 V there exists an element �v 2 V such

that v + (�v) = O;
(c) (Associativity of addition) For all v1, v2, v3 2 V,

(v1 + v2) + v3 = v1 + (v2 + v3);

(2) (Abelian property)
(a) (Commutativity of addition) For all v1, v2 2 V,

v1 + v2 = v2 + v1;

(3) (Module conditions)
(a) For all l 2 K and all v1, v2 2 V,

l · (v1 + v2) = (l · v1) + (l · v2).

(b) For all l1, l2 2 K, and all v 2 V,

(l1 + l2) · v = (l1 · v) + (l2 · v).

(c) For all l1, l2 2 K, and all v 2 V,

(l1l2) · v = l1 · (l2 · v).

(d) For all v 2 V,
1 · v = v.

In the above, for all l 2 K and all v, v1, v2 2 V we have denoted +(v1, v2) by v1 + v2
and ·(l, v) by l · v.

In addition, for brevity, we will often write lv for l · v.
EXAMPLE 6.2 (The vector space Kn). By definition,

Kn = {(x1, . . . , xn) : xi 2 K, 1  i  n}.

The map + : Kn ⇥ Kn ! Kn is defined by the rule

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)
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40 6. VECTOR SPACES AND LINEAR MAPS

for all (x1, . . . , xn), (y1, . . . , yn) 2 Kn. The map · : K ⇥ Kn ! Kn is defined by the
rule

l · (x1, . . . , xn) = (lx1, . . . , lxn)

for all l 2 K and (x1, . . . , xn) 2 Kn.

Exercise 6.3. Show that (Kn,+, ·), defined in the example above, is a vector space.

Exercise 6.4. Find an example of a triple (V,+, ·) satisfying all of the conditions of the
definition of a K-vector space, except for condition (3)(d).

Exercise 6.5. Let (V,+, ·) be a vector space. Show that if v 2 V satisfies v0 + v = v0 for
all v0 2 V, then v = O, the additive identity.

Exercise 6.6. Let (V,+, ·) be a vector space. Let v 2 V. Fix an element (�v) 2 V such
that v + (�v) = O. Suppose that there is w 2 V such that v + w = O. Show that
w = (�v).

Exercise 6.7. Show the following properties hold for all v, v1, v2 2 V and all l, l1, l2 2
K.

(1) 0v = O.
(2) lO = O.
(3) (�l)v = �(lv) = l(�v).
(4) If lv = O, then either l = 0 or v = O.
(5) If lv1 = lv2, then either l = 0 or v1 = v2.
(6) If l1v = l2v, then either l1 = l2 or v = O.
(7) �(v1 + v2) = (�v1) + (�v2).
(8) v + v = 2v, v + v + v = 3v, and in general Ân

i=1 v = nv.

exeMAP Exercise 6.8. Consider the set of maps from a set S to K. Let us denote this set by
Map(S, K). Define addition and multiplication maps

+ : Map(S, K)⇥ Map(S, K) ! Map(S, K)

and
· : K ⇥ Map(S, K) ! Map(S, K)

in the following way. For all f , g 2 Map(S, K), set f + g to be the function defined
by ( f + g)(x) = f (x) + g(x) for all x 2 S. For all l 2 K and all f 2 Map(S, K),
set l · f to be the function defined by (l · f )(x) = l f (x) for all x 2 S. Show that
(Map(S, K),+, ·) is a vector space.

2. Sub-K-vector spaces

Definition 6.9 (sub-K-vector space). Let (V,+, ·) be a K-vector space. A sub-K-
vector space of (V,+, ·) is a K-vector space (V0,+0, ·0) such that V0 ✓ V and such
that for all v0, v01, v02 2 V0 and all l 2 K,

v01 +
0 v02 = v01 + v02 and l ·0 v0 = l · v0.

Definition 6.10. If (V,+, ·) is a K-vector space, and V0 ✓ V is a subset, we say that V0

is closed under + (resp. closed under ·) if for all v01, v02 2 V0 (resp. for all l 2 K and all
v0 2 V0) we have v01 + v02 2 V0 (resp. l · v0 2 V0). In this case, we define

+|V0 : V0 ⇥ V0 ! V0
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(resp. ·|V0 : K ⇥V0 ! V0) to be the map given by v01 + |V0v02 = v01 + v02 (resp. l · |V0v0 =
l · v0), for all v01, v02 2 V0 (resp. for all l 2 K and all v0 2 V0).

REMARK 6.11. Note that if (V0,+0, ·0) is a sub-K-vector space of (V,+, ·), then V0

is closed under + and ·.

Exercise 6.12. Show that if a non-empty subset V0 ✓ V is closed under + and ·, then
(V0,+|V0 , ·|V0) is a sub-K-vector space of (V,+, ·).
Exercise 6.13. Show that if (V0,+0, ·0) is a sub-K-vector space of a K-vector space (V,+, ·),
then the additive identity element O0 2 V0 is equal to the additive identity element O 2 V.

Exercise 6.14. Recall the R-vector space (Map(R, R),+, ·) from Exercise 6.8. In this
exercise, show that the subsets of Map(R, R) listed below are closed under + and ·, and
so define sub-K-vector spaces of (Map(R, R),+, ·).

(1) The set of all polynomial functions.
(2) The set of all polynomial functions of degree less than n.
(3) The set of all functions that are continuos on an interval (a, b) ✓ R.
(4) The set of all functions differentiable at a point a 2 R.
(5) The set of all functions differentiable on an interval (a, b) ✓ R.
(6) The set of all functions with f (1) = 0.
(7) The set of all solutions to the differential equation f 00 + a f 0 + b f = 0 for some

a, b 2 R.

Exercise 6.15. In this exercise, show that the subsets of Map(R, R) listed below are NOT
closed under + and ·, and so do not define sub-K-vector spaces of (Map(R, R),+, ·).

(1) Fix a 2 R with a 6= 0. The set of all functions with f (1) = a.
(2) The set of all solutions to the differential equation f 00 + a f 0 + b f = c for some

a, b, c 2 R with c 6= 0.

3. Linear maps

Definition 6.16 (Linear map). Let (V,+, ·) and (V0,+0, ·0) be K-vector spaces. A lin-
ear map F : (V,+, ·) ! (V0,+0, ·0) is a map of sets

f : V ! V0

such that for all l 2 K and v, v1, v2 2 V,

f (v1 + v2) = f (v1) +
0 f (v2) and f (l · v) = l ·0 f (v).

Note that we will frequently use the same letter for the linear map and the
map of sets. The K-vector space (V,+, ·) is called the source (or domain) of the
linear map and the K-vector space (V0,+0, ·0) is called the target (or codomain) of
the linear map. The set f (V) ✓ V0 is called the image (or range) of f .

Exercise 6.17. Let f : (V,+, ·) ! (V0,+0, ·0) be a linear map of K-vector spaces. Show
that the image of f is closed under +0, ·0, and so defines a sub-K-vector space of the target
(V0,+0, ·0).
Exercise 6.18. Let f : (V,+, ·) ! (V0,+0, ·0) be a linear map of K-vector spaces. Show
that f (O) = O0.

exlinexa Exercise 6.19. Show that the following maps of sets define linear maps of the K-vector
spaces.



42 6. VECTOR SPACES AND LINEAR MAPS

(1) Let (V,+, ·) be a K-vector space. Show that the identity map f : V ! V, given
by f (v) = v for all v 2 V, is a linear map. This linear map will frequently be
denoted by IdV.

(2) Let (V,+, ·) and (V0,+0, ·0) be K-vector spaces. Show that the zero map f :
V ! V0, given by f (v) = O0 for all v 2 V, is a linear map.

(3) Let (V,+, ·) be a K-vector space and let a 2 K. Show that the multiplication
map f : V ! V given by f (v) = a · v for all v 2 V is a linear map. This linear
map will frequently be denoted by a IdV.

(4) Let aij 2 K for 1  i  m and 1  j  n. Show that the map f : Kn ! Km

given by

f (x1, . . . , xn) =

 

n

Â
j=1

a1jxj, . . . ,
n

Â
j=1

aijxj, . . . ,
n

Â
j=1

amjxj

!

is a linear map.
(5) Let (V,+, ·) be the R-vector space of all differentiable real functions g : R ! R.

Let (V0,+0, ·0) be the K-vector space of all real functions g : R ! R. Show that
the map f : (V,+, ·) ! (V0,+0, ·0) that sends a differentiable function g to its
derivative g0 is a linear map.

(6) Let (V,+, ·) be the R-vector space of all continuous real functions f : R ! R.
Show that the map f : (V,+, ·) ! (V,+, ·) that sends a function g 2 V to the
function f (g) 2 V determined by

f (g)(x) :=
Z x

a
g(t)dt for all x 2 R

is a linear map. Make sure to show that f (g) 2 V for all g 2 V.
Definition 6.20 (Kernel). Let f : (V,+, ·) ! (V0,+0, ·0) be a linear map of K-vector
spaces. The kernel of f (or Null space of f ), denoted ker( f ) (or Null( f )), is the set

ker( f ) := f�1(O0) = {v 2 V : f (v) = O0}.

Exercise 6.21. Let f : (V,+, ·) ! (V0,+0, ·0) be a linear map of K-vector spaces. Show
that ker( f ) is a sub-K-vector space of (V,+, ·).
Exercise 6.22. Find the kernel of each of the linear maps listed below (see Problem 6.19).

(1) The linear map IdV.
(2) The zero map V ! V0.
(3) The linear map a IdV.
(4) Let aij 2 K for 1  i  m and 1  j  n. The linear map f : Kn ! Km defined

by

f (x1, . . . , xn) =

 

n

Â
j=1

a1jxj, . . . ,
n

Â
j=1

aijxj, . . . ,
n

Â
j=1

amjxj

!

.

(5) Let (V,+, ·) be the R-vector space of all differentiable real functions g : R ! R.
Let (V0,+0, ·0) be the K-vector space of all real functions g : R ! R. The linear
map f : (V,+, ·) ! (V0,+0, ·0) that sends a differentiable function g to its
derivative g0.

(6) Let (V,+, ·) be the R-vector space of all continous real functions g : R ! R.
The linear map f : (V,+, ·) ! (V,+, ·) that sends a function g 2 V to the
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function f (g) 2 V determined by

f (g)(x) :=
Z x

a
g(t)dt for all x 2 R.

Exercise 6.23. Show that the composition of linear maps is a linear map.
Definition 6.24 (Isomorphism). Let f : (V,+, ·) ! (V0,+0, ·0) be a linear map of K-
vector spaces. We say that f is an isomorphism of K-vector spaces if there is a linear map
g : (V0,+0, ·0) ! (V,+, ·) of K-vector spaces such that

g � f = Id(V,+,·) and f � g = Id(V0 ,+0 ,·0) .

Exercise 6.25. Show that a linear map is an isomorphism if and only if it is bijective.


