CHAPTER 6

Vector spaces and linear maps

In what follows, fix $K \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$. More generally, *K* can be any field.

1. Vector spaces

Definition 6.1. A vector space over K consists of a triple $(V, +, \cdot)$, where V is a set, and $+: V \times V \rightarrow V$ and $\cdot: K \times V \rightarrow V$ are maps, satisfying the following properties:

- (1) (*Group laws*)
 - (a) (Additive identity) There exists an element $O \in V$ such that for all $v \in V$, v + O = v;
 - (b) (Additive inverse) For each $v \in V$ there exists an element $-v \in V$ such that v + (-v) = O;
 - (c) (Associativity of addition) For all $v_1, v_2, v_3 \in V$,

$$(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3);$$

- (2) (Abelian property)
 - (a) (Commutativity of addition) For all $v_1, v_2 \in V$,

$$v_1 + v_2 = v_2 + v_1;$$

- (3) (Module conditions)
 - (a) For all $\lambda \in K$ and all $v_1, v_2 \in V$,

$$\lambda \cdot (v_1 + v_2) = (\lambda \cdot v_1) + (\lambda \cdot v_2).$$

(b) For all $\lambda_1, \lambda_2 \in K$, and all $v \in V$,

$$(\lambda_1 + \lambda_2) \cdot v = (\lambda_1 \cdot v) + (\lambda_2 \cdot v).$$

(c) For all $\lambda_1, \lambda_2 \in K$, and all $v \in V$,

$$(\lambda_1\lambda_2)\cdot v = \lambda_1\cdot (\lambda_2\cdot v).$$

(d) For all $v \in V$,

$$1 \cdot v = v.$$

In the above, for all $\lambda \in K$ and all $v, v_1, v_2 \in V$ we have denoted $+(v_1, v_2)$ by $v_1 + v_2$ and $\cdot(\lambda, v)$ by $\lambda \cdot v$.

In addition, for brevity, we will often write λv for $\lambda \cdot v$. EXAMPLE 6.2 (The vector space K^n). By definition,

 $K^n = \{ (x_1, \ldots, x_n) : x_i \in K, \ 1 \le i \le n \}.$

The map $+ : K^n \times K^n \to K^n$ is defined by the rule

$$(x_1,...,x_n) + (y_1,...,y_n) = (x_1 + y_1,...,x_n + y_n)$$

for all $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in K^n$. The map $\cdot : K \times K^n \to K^n$ is defined by the rule

$$\lambda \cdot (x_1, \ldots, x_n) = (\lambda x_1, \ldots, \lambda x_n)$$

for all $\lambda \in K$ and $(x_1, \ldots, x_n) \in K^n$.

Exercise 6.3. Show that $(K^n, +, \cdot)$, defined in the example above, is a vector space.

Exercise 6.4. Find an example of a triple $(V, +, \cdot)$ satisfying all of the conditions of the definition of a K-vector space, except for condition (3)(d).

Exercise 6.5. Let $(V, +, \cdot)$ be a vector space. Show that if $v \in V$ satisfies v' + v = v' for all $v' \in V$, then v = O, the additive identity.

Exercise 6.6. Let $(V, +, \cdot)$ be a vector space. Let $v \in V$. Fix an element $(-v) \in V$ such that v + (-v) = O. Suppose that there is $w \in V$ such that v + w = O. Show that w = (-v).

Exercise 6.7. Show the following properties hold for all $v, v_1, v_2 \in V$ and all $\lambda, \lambda_1, \lambda_2 \in K$.

(1) 0v = O. (2) $\lambda O = O$. (3) $(-\lambda)v = -(\lambda v) = \lambda(-v)$. (4) If $\lambda v = O$, then either $\lambda = 0$ or v = O. (5) If $\lambda v_1 = \lambda v_2$, then either $\lambda = 0$ or $v_1 = v_2$. (6) If $\lambda_1 v = \lambda_2 v$, then either $\lambda_1 = \lambda_2$ or v = O. (7) $-(v_1 + v_2) = (-v_1) + (-v_2)$. (8) v + v = 2v, v + v + v = 3v, and in general $\sum_{i=1}^{n} v = nv$.

Exercise 6.8. Consider the set of maps from a set S to K. Let us denote this set by Map(S, K). Define addition and multiplication maps

$$+: \operatorname{Map}(S, K) \times \operatorname{Map}(S, K) \to \operatorname{Map}(S, K)$$

and

$$\cdot: K \times \operatorname{Map}(S, K) \to \operatorname{Map}(S, K)$$

in the following way. For all $f,g \in Map(S,K)$, set f + g to be the function defined by (f + g)(x) = f(x) + g(x) for all $x \in S$. For all $\lambda \in K$ and all $f \in Map(S,K)$, set $\lambda \cdot f$ to be the function defined by $(\lambda \cdot f)(x) = \lambda f(x)$ for all $x \in S$. Show that $(Map(S,K), +, \cdot)$ is a vector space.

2. Sub-*K*-vector spaces

Definition 6.9 (sub-K-vector space). Let $(V, +, \cdot)$ be a K-vector space. A sub-K-vector space of $(V, +, \cdot)$ is a K-vector space $(V', +', \cdot')$ such that $V' \subseteq V$ and such that for all $v', v'_1, v'_2 \in V'$ and all $\lambda \in K$,

$$v_1' + v_2' = v_1' + v_2'$$
 and $\lambda \cdot v' = \lambda \cdot v'$.

Definition 6.10. If $(V, +, \cdot)$ is a K-vector space, and $V' \subseteq V$ is a subset, we say that V' is **closed under** + (**resp. closed under** ·) if for all $v'_1, v'_2 \in V'$ (resp. for all $\lambda \in K$ and all $v' \in V'$) we have $v'_1 + v'_2 \in V'$ (resp. $\lambda \cdot v' \in V'$). In this case, we define

$$+|_{V'}: V' \times V' \to V'$$

40

3. LINEAR MAPS

(resp. $\cdot|_{V'}: K \times V' \to V'$) to be the map given by $v'_1 + |_{V'}v'_2 = v'_1 + v'_2$ (resp. $\lambda \cdot |_{V'}v' = \lambda \cdot v'$), for all $v'_1, v'_2 \in V'$ (resp. for all $\lambda \in K$ and all $v' \in V'$).

REMARK 6.11. Note that if $(V', +', \cdot')$ is a sub-*K*-vector space of $(V, +, \cdot)$, then V' is closed under + and \cdot .

Exercise 6.12. Show that if a non-empty subset $V' \subseteq V$ is closed under + and \cdot , then $(V', +|_{V'}, \cdot|_{V'})$ is a sub-K-vector space of $(V, +, \cdot)$.

Exercise 6.13. Show that if $(V', +', \cdot')$ is a sub-K-vector space of a K-vector space $(V, +, \cdot)$, then the additive identity element $O' \in V'$ is equal to the additive identity element $O \in V$.

Exercise 6.14. Recall the \mathbb{R} -vector space (Map(\mathbb{R}, \mathbb{R}), +, \cdot) from Exercise 6.8. In this exercise, show that the subsets of Map(\mathbb{R}, \mathbb{R}) listed below are closed under + and \cdot , and so define sub-K-vector spaces of (Map(\mathbb{R}, \mathbb{R}), +, \cdot).

- (1) The set of all polynomial functions.
- (2) The set of all polynomial functions of degree less than n.
- (3) The set of all functions that are continuos on an interval $(a, b) \subseteq \mathbb{R}$.
- (4) The set of all functions differentiable at a point $a \in \mathbb{R}$.
- (5) The set of all functions differentiable on an interval $(a, b) \subseteq \mathbb{R}$.
- (6) The set of all functions with f(1) = 0.
- (7) The set of all solutions to the differential equation f'' + af' + bf = 0 for some $a, b \in \mathbb{R}$.

Exercise 6.15. In this exercise, show that the subsets of $Map(\mathbb{R}, \mathbb{R})$ listed below are NOT closed under + and \cdot , and so do not define sub-K-vector spaces of $(Map(\mathbb{R}, \mathbb{R}), +, \cdot)$.

- (1) *Fix* $a \in \mathbb{R}$ *with* $a \neq 0$. *The set of all functions with* f(1) = a.
- (2) The set of all solutions to the differential equation f'' + af' + bf = c for some $a, b, c \in \mathbb{R}$ with $c \neq 0$.

3. Linear maps

Definition 6.16 (Linear map). Let $(V, +, \cdot)$ and $(V', +', \cdot')$ be K-vector spaces. A linear map $F : (V, +, \cdot) \rightarrow (V', +', \cdot')$ is a map of sets

$$f: V \to V'$$

such that for all $\lambda \in K$ and $v, v_1, v_2 \in V$,

$$f(v_1 + v_2) = f(v_1) + f(v_2)$$
 and $f(\lambda \cdot v) = \lambda \cdot f(v)$.

Note that we will frequently use the same letter for the linear map and the map of sets. The *K*-vector space $(V, +, \cdot)$ is called the **source** (or domain) of the linear map and the *K*-vector space $(V', +', \cdot')$ is called the **target** (or codomain) of the linear map. The set $f(V) \subseteq V'$ is called the **image** (or range) of *f*.

Exercise 6.17. Let $f : (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of K-vector spaces. Show that the image of f is closed under $+', \cdot'$, and so defines a sub-K-vector space of the target $(V', +', \cdot')$.

Exercise 6.18. Let $f : (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of K-vector spaces. Show that f(O) = O'.

Exercise 6.19. Show that the following maps of sets define linear maps of the K-vector spaces.

- (1) Let $(V, +, \cdot)$ be a K-vector space. Show that the identity map $f : V \to V$, given by f(v) = v for all $v \in V$, is a linear map. This linear map will frequently be denoted by Id_V .
- (2) Let $(V, +, \cdot)$ and $(V', +', \cdot')$ be K-vector spaces. Show that the zero map $f : V \to V'$, given by f(v) = O' for all $v \in V$, is a linear map.
- (3) Let (V, +, ·) be a K-vector space and let α ∈ K. Show that the multiplication map f : V → V given by f(v) = α · v for all v ∈ V is a linear map. This linear map will frequently be denoted by α Id_V.
- (4) Let $a_{ij} \in K$ for $1 \le i \le m$ and $1 \le j \le n$. Show that the map $f : K^n \to K^m$ given by

$$f(x_1,...,x_n) = \left(\sum_{j=1}^n a_{1j}x_j,...,\sum_{j=1}^n a_{ij}x_j,...,\sum_{j=1}^n a_{mj}x_j\right)$$

is a linear map.

- (5) Let (V, +, ·) be the ℝ-vector space of all differentiable real functions g : ℝ → ℝ. Let (V', +', ·') be the K-vector space of all real functions g : ℝ → ℝ. Show that the map f : (V, +, ·) → (V', +', ·') that sends a differentiable function g to its derivative g' is a linear map.
- (6) Let $(V, +, \cdot)$ be the \mathbb{R} -vector space of all continuous real functions $f : \mathbb{R} \to \mathbb{R}$. Show that the map $f : (V, +, \cdot) \to (V, +, \cdot)$ that sends a function $g \in V$ to the function $f(g) \in V$ determined by

$$f(g)(x) := \int_{a}^{x} g(t) dt$$
 for all $x \in \mathbb{R}$

is a linear map. Make sure to show that $f(g) \in V$ for all $g \in V$.

Definition 6.20 (Kernel). Let $f : (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of K-vector spaces. The kernel of f (or Null space of f), denoted ker(f) (or Null(f)), is the set

$$\ker(f) := f^{-1}(O') = \{ v \in V : f(v) = O' \}.$$

Exercise 6.21. Let $f : (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of K-vector spaces. Show that ker(f) is a sub-K-vector space of $(V, +, \cdot)$.

Exercise 6.22. Find the kernel of each of the linear maps listed below (see Problem 6.19).

- (1) The linear map Id_V .
- (2) The zero map $V \to V'$.
- (3) The linear map $\alpha \operatorname{Id}_V$.
- (4) Let $a_{ij} \in K$ for $1 \le i \le m$ and $1 \le j \le n$. The linear map $f : K^n \to K^m$ defined by

$$f(x_1,\ldots,x_n)=\left(\sum_{j=1}^n a_{1j}x_j,\ldots,\sum_{j=1}^n a_{ij}x_j,\ldots,\sum_{j=1}^n a_{mj}x_j\right).$$

- (5) Let (V, +, ·) be the ℝ-vector space of all differentiable real functions g : ℝ → ℝ. Let (V', +', ·') be the K-vector space of all real functions g : ℝ → ℝ. The linear map f : (V, +, ·) → (V', +', ·') that sends a differentiable function g to its derivative g'.
- (6) Let $(V, +, \cdot)$ be the \mathbb{R} -vector space of all continous real functions $g : \mathbb{R} \to \mathbb{R}$. The linear map $f : (V, +, \cdot) \to (V, +, \cdot)$ that sends a function $g \in V$ to the

42

function $f(g) \in V$ determined by

$$f(g)(x) := \int_{a}^{x} g(t) dt$$
 for all $x \in \mathbb{R}$.

Exercise 6.23. Show that the composition of linear maps is a linear map.

Definition 6.24 (Isomorphism). Let $f : (V, +, \cdot) \to (V', +', \cdot')$ be a linear map of *K*-vector spaces. We say that f is an isomorphism of *K*-vector spaces if there is a linear map $g : (V', +', \cdot') \to (V, +, \cdot)$ of *K*-vector spaces such that

$$g \circ f = \mathrm{Id}_{(V,+,\cdot)}$$
 and $f \circ g = \mathrm{Id}_{(V',+',\cdot')}$.

Exercise 6.25. Show that a linear map is an isomorphism if and only if it is bijective.