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1

10 points

1 . Define a binary operation ∗ on X = R− {1} by

a ∗ b := ab− a− b+ 2,

for all a, b ∈ X. Is (X, ∗) a group? Explain your answer.

Solution.

(X, ∗) is a group.

To show that (X, ∗) is a group, we must establish that there exists an identity element, that
there exist inverses, and that ∗ is associative. Let us begin with the identity element. I claim
that the identity element is 2. Indeed,

a ∗ 2 = 2 ∗ a = 2a− a− 2 + 2 = a

for all a ∈ X, and so 2 is an identity element. Now I claim that given a ∈ X, there is an
inverse a/(a− 1). Indeed,

a ∗ a

a− 1
=

a2

a− 1
− a− a

a− 1
+ 2 =

a2 − a(a− 1)− a
a− 1

+ 2 = 2,

establishing the claim. Finally, let us check that ∗ is associative. We have

(a ∗ b) ∗ c = (ab− a− b+ 2) ∗ c
= (ab− a− b+ 2)c− (ab− a− b+ 2)− c+ 2 = abc− ab− ac− bc+ a+ b+ c+ 2.

On the other hand, we have

a ∗ (b ∗ c) = a ∗ (bc− b− c+ 2)

= a(bc− b− c+ 2)− a− (bc− b− c+ 2) + 2 = abc− ab− ac− bc+ a+ b+ c+ 2.

These expressions agree, and hence ∗ is associative. In conclusion, we have shown that (X, ∗)
is a group. �
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2 (a). [3 points] How many subgroups are there of Z42.

Solution.

There are 8 subgroups of Z42.

We have seen in class that every subgroup of a cyclic group is cyclic (and so generated by a
single element). Moreover, we have seen that 〈[m]〉 = 〈[gcd(n,m)]〉. Consequently, there is
one subgroup of Zn for each divisor of n. In our case, since 42 = 21 · 31 · 71, there must be
2 · 2 · 2 = 8 divisors of 42. These are are easily seen to be 1, 2, 3, 7, 6, 14, 21, 42. Thus there
are eight subgroups of Z42. �

2 (b). [3 points] Is [21] a generator of Z100?

Solution.

Yes, [21] is a generator of Z100.

We have seen that for an element [m] ∈ Zn, the order of the group 〈[m]〉 is equal to
n/ gcd(n,m). In other words, [m] is a generator of Zn if and only if gcd(n,m) = 1. Thus,
since gcd(100, 21) = 1 we see that 21 is a generator. �

2 (c). [4 points] Are the groups Z6 × Z15 × Z8 and Z3 × Z24 × Z10 isomorphic?

Solution.

Yes, Z6 × Z15 × Z8
∼= Z3 × Z24 × Z10.

From the theorem on finitely generated abelian groups, we have

Z6 × Z15 × Z8
∼= (Z3 × Z2)× (Z3 × Z5)× Z8

∼= Z3 × Z24 × Z10.

�
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3 . Consider the dihedral group D3; that is the group of symmetries of an equilateral
triangle. Using the same notation as in class, let R ∈ D3 correspond to clockwise rotation
by π/3 radians, and let D ∈ D3 correspond to flipping through a chosen vertex.

3 (a). Find i ∈ Z and j ∈ {0, 1} such that R2DRDR−1 = RiDj.

Solution.

R2DRDR−1 = R0D0.

We have shown in class, and it is not hard to check that RD = DR−1. Thus

R2DRDR−1 = R2D(DR−1)R−1 = Id = R0D0.

�

3 (b). What is the order of the element RD?

Solution.

|RD| = 2.

We have RD 6= Id and
(RD)(RD) = RR−1DD = Id.

�

3 (c). Show that D3 is isomorphic to S3, the symmetric group on 3 letters.

Solution. Let σ = (1, 2, 3) ∈ S3 and let τ = (2, 3) ∈ S3. Note that

στ = (1, 2, 3)(2, 3) = (1, 2) = (2, 3)(3, 2, 1) = τσ−1.

Now recall that as a set D3 = {Id,R,R2, D,RD,R2D}. Define a map of sets φ : D3 → S3

by
RiDj 7→ σiτ j.

I claim this is a homomorphism. Indeed, we have

φ((RaDb)(RcDd)) = φ(Ra+(−1)bcDd−b) = σa+(−1)bcτ d−b = σaτ bσcτ d = φ(RaDb)φ(RcDd).

Finally I claim that φ is injective. This can be checked explicitly on the six elements of D3.
For instance φ(RD) = στ = (1, 2) 6= Id. Now, since φ is an injective map of sets of the
same order, it is also a surjective map. Thus φ is a bijective homomorphism, which is an
isomorphism. �
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4 . Let G = {0, 1, 2, . . . , n} and let ∗ be a binary operation on G. Assume that (G, ∗) is a
group, and ∗ satisfies

(1) a ∗ b ≤ a+ b for all a, b ∈ G.
(2) a ∗ a = 0 for all a ∈ G

Show that n = 2m − 1 for some m ∈ N. [Hint: use (1) and (2) to show that 0 is the identity
element. Then use (2) to show that G is abelian. Then use (2) and the theorem on finitely
generated abelian groups.]

Solution. First I will establish that 0 is the identity element of G. That is I will show that
0 ∗ k = k for all k ∈ G. I will do this by induction on k. For the base case, consider that by
(2), we have 0 ∗ 0 = 0. Now assume that we have shown that 0 ∗ k = k for all k ≤ r. I will
show that 0 ∗ (r + 1) = r + 1. Indeed, from (1) it follows that 0 ∗ (r + 1) ∈ {0, . . . , r + 1}.
But if 0 ∗ (r + 1) = k with k < r + 1, then 0 ∗ (r + 1) = 0 ∗ k by induction. Multiplying by
0−1, we get r + 1 = k a contradiction. Thus 0 ∗ (r + 1) = r + 1. By induction, we have that
0 ∗ k = k for all k ∈ G. Thus 0 is the identity element of the group.
Next I claim that G is abelian. In fact, this is true for any group Γ such that a2 = e for
all a ∈ Γ. Indeed, we have e = (ab)(ab). From this we get b = ababb = aba, and then
ba = abaa = ab. This holds for any a, b ∈ Γ, so Γ is abelian. We conclude that G is a finite
abelian group.
The theorem on finitely generated abelian groups implies that G ∼= Zn1 × . . .×Znm for some
numbers n1, . . . , nm all greater than or equal to two. If any of the ni were greater than 2,
there would be an element in G with order greater than 2, contradicting (2). Indeed, we
could assume that n1 > 2, and then the element (1, 0, . . . , 0) would have order equal to n1,
greater than 2. Thus all of the ni are equal to 2, and |G| = 2m. Finally, since |G| = n + 1,
we conclude that n = 2m − 1. �
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5 . True or false. If true, explain briefly (a sentence or two). If false, provide a counter
example.

5 (a). Every cyclic group is abelian. [ ]

Solution. TRUE. We proved this in class (and it is easy to check directly). �

5 (b). Every abelian group is cyclic. [ ]

Solution. FALSE. The group Z2 × Z2 is abelian, but not cyclic. �

5 (c). An element g of a group G has order n > 0 if and only if gn = e. [ ]

Solution. FALSE. In Z4, the element [2] satisfies 4 · [2] = [0], but the order of [2] is equal to
2. �

5 (c). A cyclic group has a unique generator. [ ]

Solution. FALSE. [1] and [2] generate Z3. �

5 (e). If H and H ′ are subgroups of a group G, then H ∪H ′ is a subgroup. [ ]

Solution. FALSE. Consider the subgroupsH = 〈([1], [0])〉 andH ′ = 〈([0], [1])〉 inG = Z2×Z2.
Then ([1], [0]) + ([0], [1]) = ([1], [1]) /∈ H ∪H ′. So H ∪H ′ is not closed under the operation
of G. �

5 (f). There exists a finite abelian group of every order n ∈ N. [ ]

Solution. TRUE. The cyclic group Zn is abelian. �
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