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1

10 points

1. Let R = {a+ bx : a, b ∈ C} ⊆ C[x] be the set of polynomials of degree at most 1. Define
addition and multiplication on R by

(a+ bx) + (a′ + b′x) = (a+ a′) + (b+ b′)x

and
(a+ bx)(a′ + b′x) = aa′ + (ab′ + a′b)x

for all a, a′, b, b′ ∈ C. Show that (R,+, ·) is a ring.

Solution. Let us begin by showing that (R,+) is an abelian group. We have already shown
that C[x] is an abelian group; next observe that the addition rule for R is the addition rule
induced by that of C[x]. So it will be enough to show that R is a subgroup of C[x]. We have
seen that it suffices to show that for all a+ bx, a′+ b′x ∈ R, we have (a+ bx)− (a′+ b′x) ∈ R.
But we have

(a+ bx)− (a′ + b′x) = (a− a′) + (b− b′)x ∈ R
so indeed (R,+) is a subgroup of C[x], (and hence a group).

Let us now check that · is an associative binary operation on R. For all a, a′, a′′, b, b′, b′′ ∈ C
we have

((a+ bx)(a′ + b′x))(a′′ + b′′x) = (aa′ + (ab′ + a′b)x)(a′′ + b′′x)

= (aa′)a′′ + (aa′b′′ + (ab′ + a′b)a′′)x = (a+ bx)(a′a′′ + (a′b′′ + a′′b′)x)

= (a+ bx)((a′ + b′x)(a′′ + b′′x)).

Thus · is associative.

Finally, let us check that the distributive law holds. Since · is commutative, it suffices to
show that for all a, a′, a′′, b, b′, b′′ ∈ C, we have

(a+ bx)((a′ + b′x) + (a′′ + b′′x)) = (a+ bx)(a′ + b′x) + (a+ bx)(a′′ + b′′x).

But a quick computation shows that both sides of the equality above are equal to

(aa′ + aa′′) + ((ab′ + a′b) + (ab′′ + a′′b))x.

Thus the distributive law holds, and we have completed the proof that (R,+, ·) is a ring. �
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2. Recall that for a commutative ring R with unity 1 6= 0, we define R[x] to be the ring of
polynomials in x with coefficients in R. Consider the map

φ : Z[x]→ Z4[x] given by the rule
n∑

k=0

akx
k 7→

n∑
k=0

[ak]xk.

2(a) [6 points]. Show that φ is a homomorphism of rings.

Solution. We must show for all p(x), q(x) ∈ Z[x] that

φ(p(x) + q(x)) = φ(p(x)) + φ(q(x)) and φ(pq) = φ(p)φ(q).

To do this, let us suppose that p(x) =
∑n

k=0 akx
k and q(x) =

∑m
j=0 bjx

j; since addition and
multiplication is commutative, we may assume that n ≤ m, and in fact, taking ak = 0 for
k > n, we may assume n = m. Then

φ(p+ q) = φ

(
n∑

k=0

akx
k +

n∑
j=0

bjx
j

)
= φ

(
n∑

k=0

(ak + bk)xk

)
=

n∑
k=0

[ak + bk]xk

=
n∑

k=0

[ak]xk +
n∑

j=0

[bj]x
j = φ(p) + φ(q).

Similarly,

φ(p · q) = φ

(
n∑

k=0

akx
k ·

n∑
j=0

bjx
j

)
= φ

(
2n∑
i=0

(
i∑

k=0

(akbi−k)

)
xi

)
=

2n∑
i=0

(
i∑

k=0

[ak][bi−k]

)
xi

=
n∑

k=0

[ak]xk ·
n∑

j=0

[bj]x
j = φ(p) · φ(q).

Thus φ is a homomorphism of rings. �

2(b) [2 points]. Describe the kernel of φ (in terms of the coefficients of the polynomials).

Solution. We can describe the kernel as

kerφ = 4Z[x].

Indeed, p(x) =
∑n

k=0 akx
k ∈ kerφ ⇐⇒ [ak] = 0 for all k = 0, . . . , n ⇐⇒ ak ∈ 4Z for all

k = 0, . . . , n. �

2(c) [2 points]. Is φ surjective?

Solution. Yes, φ is surjective. If g(x) =
∑n

k=0[ak]xk ∈ Z4[x], then setting p(x) =
∑n

k=0 akx
k,

we have φ(p) = g. �
3



3

10 points

3. Let G be a group with center Z(G). Assume that G/Z(G) is cyclic.

3(a) [6 points]. Show that Z(G) = G. [Hint: Show there exists g ∈ G such that for any
g1 ∈ G, there is a z1 ∈ Z(G) and n1 ∈ Z such that g1 = gn1z1.]

Solution. It suffices to show that G is abelian (from the definition of the center, it follows
immediately that G is abelian if and only if G = Z(G)). To show G is abelian, we must
show that given g1, g2 ∈ G, then

g1g2 = g2g1.

To begin, since the group G/Z(G) is cyclic, it has a generator [g] ∈ G/Z(G) for some g ∈ G
(here I am using the notation [g] = gZ(G)). It follows that there are integers n1, n2 such
that

[g1] = [g]n1 and [g2] = [g]n2 .

We can rewrite this by saying that there exists z1, z2 ∈ Z(G) such that g1 = gn1z1 and
g2 = gn2z2. Then

g1g2 = gn1z1g
n2z2 = gn2z2g

n1z1 = g2g1

since by definition z1, z2 commute with all elements of G, and g commutes with itself. �

3(b) [4 points]. Show that the commutator subgroup of G is trivial; i.e. C(G) = {eG}.

Solution. This follows from the previous part of the problem. Indeed, it follows immediately
from the definition of the commutator subgroup that C(G) = eG if and only if G is abelian.

�
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4. Consider the dihedral group Dn, with n ≥ 3. Recall the notation we have been using:
Dn has identity element Id, and is generated by elements R and D, satisfying the relations
Rn = D2 = Id and RD = DR−1. Consider the cyclic subgroup 〈R2〉.

4(a) [6 points]. Show that 〈R2〉 is a normal subgroup of Dn.

Solution. To show that 〈R2〉 is normal in D4, it suffices to check for all g ∈ D4 that
g〈R2〉g−1 ⊆ 〈R2〉. (For a subgroup H of a group G, we have seen that H is normal if
and only if gHg−1 ⊆ H for all g ∈ G). So let Ra1Db1 ∈ D4 and let R2k ∈ 〈R2〉 (here k ∈ Z).
Then

Ra1Db1R2k(Ra1Db1)−1 = Ra1Db1R2kDb1R−a1 = Ra1Db1Db1R(−1)b12kR−a1 = R(−1)b12k ∈ 〈R2〉.
Thus 〈R2〉 is normal in Dn. �

4(b) [4 points]. Find the order of the group Dn/〈R2〉 [Hint: this may depend on the parity
of n.]

Solution.

|D4/〈R2〉| = 2 if n is odd, and 4 if n is even.

To see this, we note that the order of R in Dn is n. Consequently, if n is odd, then 〈R2〉 = 〈R〉,
which has order n. If n is even, then 〈R2〉 6= 〈R〉 and the order of 〈R2〉 is n/2. By Lagrange’s
Theorem, the order of D4/〈R2〉 is then 2n/n = 2 if n is odd, or 2n/(n/2) = 4 if n is even. �
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5. True or false. (Please provide a sentence or two of explanation.)

5(a). If G is a group of order n and k divides n, then G has a subgroup of order k.

Solution. FALSE: we have seen that A4 has order 12, but does not have a subgroup of order
6. �

5(b). The alternating group A5 is simple.

Solution. TRUE: this was a homework exercise. �

5(c). The kernel of a homomorphism is a normal subgroup.

Solution. TRUE: this is a theorem we proved. �

5(d). Every element in a ring has an additive inverse.

Solution. TRUE: if (R,+, ·) is a ring, then (R,+) is an abelian group. �

5(e). Let R be a ring, and let a ∈ R. If a2 = a, then a = 0R or a = 1R.

Solution. FALSE: See for instance Exercise 18.56 (and 18.55); these give examples of rings
R (called Boolean rings) where every element a ∈ R (including a 6= 0R, a 6= 1R) satisfies
a2 = a. �
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