PRACTICE MIDTERM I

MATH 3140

Friday February 25, 2011.

Name

Please answer the all of the questions, and show your work.

1	2	3	4	5	
10	10	10	10	10	total

Date: February 20, 2011.

1 10 points

1 . Define a binary operation * on $X=\mathbb{R}-\{1\}$ by a*b:=ab-a-b+2,

for all $a, b \in X$. Is (X, *) a group? Explain your answer.

2 10 points

2 (a). [3 points] How many subgroups are there of \mathbb{Z}_{42} .

2 (b). [3 points] Is [21] a generator of \mathbb{Z}_{100} ?

2 (c). [4 points] Are the groups $\mathbb{Z}_6 \times \mathbb{Z}_{15} \times \mathbb{Z}_8$ and $\mathbb{Z}_3 \times \mathbb{Z}_{24} \times \mathbb{Z}_{10}$ isomorphic?

3	
10	points

3. Consider the dihedral group D_3 ; that is the group of symmetries of an equilateral triangle. Using the same notation as in class, let $R \in D_3$ correspond to clockwise rotation by $\pi/3$ radians, and let $D \in D_3$ correspond to flipping through a chosen vertex. 3 (a). Find $i \in \mathbb{Z}$ and $j \in \{0, 1\}$ such that $R^2 DR DR^{-1} = R^i D^j$.

3 (b). What is the order of the element RD?

3 (c). Show that D_3 is isomorphic to S_3 , the symmetric group on 3 letters.

4	
10	points

4. Let $G = \{0, 1, 2, \dots, n\}$ and let * be a binary operation on G. Assume that (G, *) is a group, and * satisfies

(1) $a * b \leq a + b$ for all $a, b \in G$. (2) a * a = 0 for all $a \in G$

Show that $n = 2^m - 1$ for some $m \in \mathbb{N}$. [Hint: use (1) and (2) to show that 0 is the identity element. Then use (2) to show that G is abelian. Then use (2) and the theorem on finitely generated abelian groups.]

5 10 points

5 . True or false. If true, explain briefly (a sentence or two). If false, provide a counter example.

5 (a). Every cyclic group is abelian. []

5 (b). Every abelian group is cyclic.

5 (c). An element g of a group G has order n > 0 if and only if $g^n = e$. [

5 (c). A cyclic group has a unique generator.

5 (e). If H and H' are subgroups of a group G, then $H \cup H'$ is a subgroup. []

5 (f). There exists a finite abelian group of every order $n \in \mathbb{N}$.