MATH4450: HOMEWORK 9

DUE FRIDAY OCTOBER 31

1. EXERCISES

1.1. Exercise (3) (a). Prove the following theorem using the outline below.

Theorem 1.1. Let $f: U \rightarrow \mathbb{R}$ be a continuous function on an open set $U \subset \mathbb{R}^{2}$. Fixing coordinates x and y on \mathbb{R}^{2}, suppose further that $\partial f / \partial x: U \rightarrow \mathbb{R}$ exists and is also continuous. Then given a closed set $V=\left[x_{0}, x_{1}\right] \times\left[y_{0}, y_{1}\right] \subseteq U$, for any $x \in\left[x_{0}, x_{1}\right]$ we have

$$
\frac{d}{d x} \int_{y_{0}}^{y_{1}} f(x, y) d y=\int_{y_{0}}^{y_{1}} \frac{\partial f(x, y)}{\partial x} d y
$$

[Hint: use the fact from multivariable calculus that if

$$
f:\left[x_{0}, x_{1}\right] \times\left[y_{0}, y_{1}\right] \rightarrow \mathbb{R}
$$

is continuous, then

$$
\int_{y_{0}}^{y_{1}}\left(\int_{x_{0}}^{x_{1}} f(x, y) d x\right) d y=\int_{x_{0}}^{x_{1}}\left(\int_{y_{0}}^{y_{1}} f(x, y) d y\right) d x
$$

and rewrite the latter integral in the theorem as

$$
\left.\int_{y_{0}}^{y_{1}} \frac{\partial f(x, y)}{\partial x} d y=\frac{d}{d x} \int_{x_{0}}^{x}\left(\int_{y_{0}}^{y_{1}} \frac{\partial f(t, y)}{\partial t} d y\right) d t .\right]
$$

1.2. Exercise (3) (b). WARNING: It is tempting to write

$$
\begin{aligned}
\frac{d}{d x} \int_{y_{0}}^{y_{1}} f(x, y) d y & =\lim _{h \rightarrow 0} \frac{1}{h}\left(\int_{y_{0}}^{y_{1}} f(x+h, y)-\int_{y_{0}}^{y_{1}} f(x, y) d y\right) \\
& =\lim _{h \rightarrow 0}\left(\int_{y_{0}}^{y_{1}} \frac{\partial f(t, y)}{\partial t} d y+\int_{y_{0}}^{y_{1}} r(x, y, h) d z\right) \\
& =\int_{y_{0}}^{y_{1}} \frac{\partial f(t, y)}{\partial t} d y+\lim _{h \rightarrow 0} \int_{y_{0}}^{y_{1}} r(x, y, h) d z
\end{aligned}
$$

where

$$
r(x, y, h)=\frac{f(x+h, y)-f(x, y)}{h}-\frac{\partial f(t, y)}{\partial t}
$$

and

$$
\lim _{h \rightarrow 0} r(x, y, h)=0
$$

But recall, and this is the warning, it is not always the case that if a function converges to zero, that its integral converges to zero. [One needs a stronger assumption such as uniform convergence.]

As an exercise, prove the following proposition:
Proposition 1.2. There exists a continuous function $f:(0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ such that for each fixed $x \in \mathbb{R}, \lim _{h \rightarrow 0^{+}} f(h, x)=0$, but

$$
\lim _{h \rightarrow 0^{+}} \int_{0}^{2} f(h, x) d x \neq 0
$$

[Hint: Consider the function

$$
g(h, x)= \begin{cases}0 & \text { if } x \leq 0 \\ h x & \text { if } 0 \leq x \leq 1 / h \\ 2-h x & \text { if } 1 / h \leq x \leq 2 / h \\ 0 & \text { if } 2 / h \geq x\end{cases}
$$

and set $f(h, x)=h g(h, x)$.

