EUCLIDEAN AND NON-EUCLIDEAN GEOMETRY MATH 3210

HOMEWORK 1

SEBASTIAN CASALAINA-MARTIN

1. Exercises

Exercise A. Let $A = \{1, 2, 4, 6\}$, $B = \{3, 2, 5\}$ and $C = \{2, 5, 10\}$. Find the following sets:

- (1) $A \cup B$.
- (2) $A \cap B$.
- (3) A B.
- (4) B A.
- (5) $(B \cup C) A$.
- (6) $(A \cup C) \cap B$.
- $(7) \mathscr{P}(B).$

Exercise B. Let J and B be sets. For each $j \in J$, let A_j be a set. Show the following:

(1)
$$B \cup \left(\bigcap_{j \in J} A_j\right) = \bigcap_{j \in J} (B \cup A_j).$$

(2) $B \cap \left(\bigcup_{j \in J} A_j\right) = \bigcup_{j \in J} (B \cap A_j).$
(3) $B - \left(\bigcap_{j \in J} A_j\right) = \bigcup_{j \in J} (B - A_j).$
(4) $B - \left(\bigcup_{j \in J} A_j\right) = \bigcap_{j \in J} (B - A_j)$

(2)
$$B \cap \left(\bigcup_{j \in J} A_j\right) = \bigcup_{j \in J} (B \cap A_j).$$

(3)
$$B - \left(\bigcap_{j \in J} A_j\right) = \bigcup_{j \in J} (B - A_j)$$

$$(4) B - \left(\bigcup_{j \in J} A_j\right) = \bigcap_{j \in J} (B - A_j)$$

Exercise C. Suppose that $f: A \to B$ is a map of sets, and let $C \subseteq A$.

- (a) Prove or give a counter example: $f(A-C) \subseteq f(A) f(C)$.
- (b) Prove or give a counter example: $f(A) f(C) \subseteq f(A C)$.
- (c) If f is injective, is it true that f(A-C) = f(A) f(C)?
- (d) If f is bijective, is it true that f(A-C) = B f(C)?

Date: January 16, 2014.

Exercise D. Define a relation on $\mathbb{N} \times \mathbb{N}$ by

$$(a,b) \sim (c,d) \iff a+d=b+c.$$

- (1) Show that \sim is an equivalence relation.
- (2) Show that if $(a, b) \sim (a', b')$ and $(c, d) \sim (c', d')$ then $(a + c, b + d) \sim (a' + c', b' + d')$.
- (3) Show that if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ then $(ac+bd,bc+ad) \sim (a'c'+b'd',b'c'+a'd')$.
- (4) Let $Z = (\mathbb{N} \times \mathbb{N}) / \sim$. Show that there is a map

$$+:Z\times Z\to Z$$

defined by [(a,b)] + [(c,d)] = [(a+c,b+d)].

(5) Let $Z = (\mathbb{N} \times \mathbb{N}) / \sim$. Show that there is a map

$$\cdot: Z \times Z \to Z$$

defined by $[(a, b)] \cdot [(c, d)] = [(ac + bd, bc + ad)].$

- (6) Let $0_Z := [(1,1)]$. Show that for all $z \in Z$, $0_Z + z = z$.
- (7) For all $z \in \mathbb{Z}$, show that there exists $z' \in \mathbb{Z}$ such that $z' + z = 0_{\mathbb{Z}}$.
- (8) For all $x, y, z \in \mathbb{Z}$, show that (x + y) + z = x + (y + z).
- (9) For all $x, y \in \mathbb{Z}$, show that x + y = y + x.
- (10) Let $1_Z = [(1,0)]$. Show that for all $z \in Z$, $1_Z \cdot z = z$.
- (11) For all $x, y \in Z$, show that $x \cdot y = y \cdot x$.
- (12) For all $x, y, z \in Z$, show that $x \cdot (y + z) = x \cdot y + x \cdot z$.