MATH 2300: CALCULUS 2 May 2, 2011 FINAL EXAM

I have neither given nor received aid on this exam.	
Name:	

001 A. Pajer(8AM)	005 A. Lizzi(12pm)
\bigcirc 002 B. Katz-Moses(9AM)	\bigcirc 006 E. Stade(1PM)
\bigcirc 003 W. Stanton	\bigcirc 007 C. Scherer(1PM)
\bigcirc 004 J. Wiscons(11AM)	008 M. Roy (2PM)

If you have a question raise your hand and remain seated. In order to receive full credit your answer must be **complete**, **legible** and **correct**. Show all of your work, and give adequate explanations.

You are **allowed and encouraged** to use your calculator, except where indicated.

DO NOT WRITE IN THIS BOX!			
Problem	Points	Score	
1	12 pts		
2	15 pts		
3	12 pts		
4	9 pts		
5	6 pts		
6	10 pts		
7	10 pts		
8	10 pts		
9	6 pts		
10	10 pts		
TOTAL	100 pts		

1. Evaluate the integral

$$\int (x^5 + x^4)(5x^4 + 4x^3) \, dx$$

in three different ways:

(a) By multiplying out the integrand, and then integrating term by term.

(b) By substitution: put $u = x^5 + x^4$.

(c) By parts: put $u = x^5 + x^4$ and $dv = (5x^4 + 4x^3) dx$. [The integral you end up with on the right hand side should look remarkably similar to the one you started with; you should be able to do some algebra to solve for this integral.]

2. For each part of this problem, state which integration technique you would use to evaluate the integral, but **DO NOT** evaluate the integral. If your answer is **substitution**, also list *u* and *du*; if your answer is **integration by parts**, also list *u*, *dv*, *du* and *v*; if your answer is **partial fractions**, set up the partial fraction decomposition, but do not solve for the numerators; if your answer is **trigonometric substitution**, write which substitution you would use.

(a)
$$\int \cos 5x \sin^2 5x \, dx$$

(b)
$$\int \frac{x^3}{\sqrt{9-x^2}} dx$$

(c)
$$\int \frac{dx}{(x^2+1)(x-3)^2}$$

(d) $\int \sqrt{x} \ln x \, dx$

(e)
$$\int \frac{3e^x}{5-e^x} dx$$

3. Let

$$f(x,y) = xe^x \cos y - ye^x \sin y.$$

(a) Find $f_x(x, y)$.

(b) Find $f_y(x,y)$.

(c) Show that

$$\frac{\partial}{\partial x}f_x(x,y) + \frac{\partial}{\partial y}f_y(x,y) = 0.$$

4. (a) Find the equation of the sphere that's centered at (6, 4, 2), and passes through the point (3, 5, 7).

- (b) Circle the correct answer: the intersection of the above sphere with the plane x = 0 is (i) a point;
 - (ii) a circle;
 - (iii) empty; that is, the plane and the sphere do not intersect.
 - If the answer is (i), give the coordinates of the point; if it's (ii), give the center and radius of the circle; if it's (iii), explain why.

- (c) Circle the correct answer: the intersection of the above sphere with the plane z = 0 is
 - (i) a point;
 - (ii) a circle;
 - (iii) empty; that is, the plane and the sphere do not intersect.

If the answer is (i), give the coordinates of the point; if it's (ii), give the center and radius of the circle; if it's (iii), explain why.

5. Consider the series

$$\sum_{n=1}^{\infty} a_n.$$

If

$$\lim_{n \to \infty} a_n = 0,$$

must the series converge? If the answer is "Yes," please explain why. If the answer is "No," give a counterexample – that is, give an example of a series

$$\sum_{n=1}^{\infty} a_n$$

such that

$$\lim_{n \to \infty} a_n = 0,$$

but the series diverges.

6. Find

$$\int_0^1 \int_0^x e^{x^2} dy \, dx.$$

Please show all work: if you need to use any techniques of integration to do either the integral in x or the integral in y, then specify how you're doing this, as in problem (2) above; also, carry these techniques through to the final answer (that is, don't just plug the integral into your calculator).

7. Consider the region R in the xy plane bounded by the curve $y = \sqrt{x}$, the x axis, and the vertical line x = 4.

(a) Write down two *different* iterated integrals – one in which you first integrate in x, and then in y; the other in which you first integrate in y, and then in x – that represent the mass of a plate situated on the above region R, whose density at any point (x, y) on that plate is given by $\delta(x, y)$.

(b) Find the mass of the plate described in part (a) of this problem, if

$$\delta(x,y) = \frac{\sin x}{\sqrt{x}}.$$

Please show your work (solve any integrals by hand, without using your calculator).

8. (a) Solve the initial value problem

$$\frac{dy}{dx} = -x^2 y^2, \quad y(1) = 1.$$

9. The power series $\sum_{n=1}^{\infty} C_n x^n$ diverges at x = 4 and converges at x = 2. At x = -5, the series

- (a) Converges.
- (b) Diverges.
- (c) Cannot be determined.

Please explain your answer.

10. (a) Find the second degree Taylor polynomial $P_2(x)$ about x = 0 for

$$f(x) = \frac{1}{e^x + e^{-x}}.$$

(b) Use your answer to part (a) above to approximate $\frac{1}{e+e^{-1}}$.

(c) Given that f''(x) is positive for $0 \le x \le 1$, do you think your estimate from part (b) is an overestimate or an underestimate of $\frac{1}{e+e^{-1}}$? Please explain. (You can check your answer by plugging $\frac{1}{e+e^{-1}}$ into your calculator, but please also explain how you could have predicted this result *without* a calculator.)