HOMEWORK 3 EXAMPLE

JANE DOE

The proofs people are turning in on the homework have generally been unclear. Here is a sample solution to one of this week's problems. Please try to emulate this example in your proofs by writing out each step of a proof clearly and with lucid explanations.

1. Exercises 9

Exercise 1 (# 9.33). Consider S_n for a fixed $n \ge 2$, and let σ be a fixed odd permutation. The problem asks us to show that every odd permutation in S_n is a product of σ and some permutation in A_n .

Proof. Let σ' be an odd permutation in S_n . We must show that there exists an even permutation $\mu \in A_n$ such that $\sigma' = \sigma \mu$.

From the definition of an odd permutation, there exist a finite number of transpositions τ_1, \ldots, τ_m for some odd $m \in \mathbb{N}$ such that

$$\sigma=\tau_1\ldots\tau_m.$$

Similarly, since σ' is also an odd permutation, there exist a finite number of transpositions $\tau'_1, \ldots, \tau'_\ell$ for some odd $\ell \in \mathbb{N}$ such that $\sigma' = \tau'_1 \ldots \tau'_\ell$. Consider now the permutation

$$\mu = \sigma^{-1} \sigma'.$$

I claim that this lies in A_n . Indeed we have

$$\mu = \sigma^{-1} \sigma' = \underbrace{\tau_m \dots \tau_1 \tau'_1 \dots \tau'_\ell}_{m+\ell}$$

The sum of two odd numbers is even, and so it follows that this is an even permutation.

As a consequence, since $\sigma' = \sigma(\sigma^{-1}\sigma') = \sigma\mu$, we have established that σ' is the product of σ and a permutation $\mu \in A_n$.

UNIVERSITY OF COLORADO AT BOULDER, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309-0395, USA

 $E\text{-}mail\ address:\ \texttt{doeQmath.colorado.edu}$

Date: September 16, 2009.