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1 . Let R be a ring (commutative with unity 1 6= 0) and let S be any subset of R. Show
that the subset

A := {r ∈ R : rs = 0 for all s ∈ S}
is an ideal.

SOLUTION:
We will show that A is a subgroup of R, and that it is closed under multiplication by

elements of R. To show that A is a subgroup, it suffices to check that if a1, a2 ∈ A, then
a1 − a2 ∈ A. To check this, we observe that for any s ∈ S

(a1 − a2)s = a1s− a2s = 0− 0 = 0,

and thus a1 − a2 ∈ A.
Now we will show that A is closed under multiplication by elements of R. Indeed, let

a ∈ A and r ∈ R. Then for any s ∈ S we have

(ra)s = r(as) = 0,

proving the claim. Thus the set A is a subgroup of R closed under multiplication by elements
of R, and so it is an ideal of R.

2



2

10 points

2 . Consider the number α :=
√

2− 3
√

5 ∈ R.
2 (a). Show that α is algebraic over Q by finding a polynomial p(x) ∈ Q[x] such that

p(α) = 0.
2 (b). Find the degree [Q(α) : Q].

SOLUTION:
For part (a), we start with the observation that

α =

√
2− 3
√

5 ⇐⇒ α2 = 2− 3
√

5 ⇐⇒ . . . ⇐⇒ α6 − 6α4 + 12α2 − 3 = 0.

Thus the p(x) = x6 − 6x4 + 12x2 − 3 is a solution to part (a).
For part (b), we use Eisenstein’s Criterion to determine that p(x) is irreducible. Conse-

quently, the degree [Q(α) : Q] = 6.
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3 . Show that the field Q(
√

2, 3
√

2, 4
√

2, . . .) is algebraic over Q, but not finite.

SOLUTION:
To show that Q(

√
2, 3
√

2, 4
√

2, . . .) is algebraic over Q we must show that each

x ∈ Q(
√

2,
3
√

2,
4
√

2, . . .)

is algebraic over Q. Since Q(
√

2, 3
√

2, 4
√

2, . . .) =
⋃

n∈N Q(
√

2, 3
√

2, . . . , n
√

2), we must have

x ∈ Q(
√

2, 3
√

2, . . . , n
√

2) for some n, and it then suffices to show that n
√

2 is algebraic over Q
for each n. This is clear since n

√
2 is a root of the polynomial xn − 2 ∈ Q[x].

We now show that Q(
√

2, 3
√

2, 4
√

2, . . .) is not finite over Q. Pursuing a proof by contradic-
tion, assume that [Q(

√
2, 3
√

2, 4
√

2, . . .) : Q] = m for some m ∈ N. Then take a natural number
n > m. By Eisenstein’s Criterion, xn − 2 ∈ Q[x] is irreducible, and so [Q( n

√
2) : Q] = n. On

the other hand, since Q ⊆ Q( n
√

2) ⊆ Q(
√

2, 3
√

2, 4
√

2, . . .), we have

n = [Q(
n
√

2) : Q]|[Q(
√

2,
3
√

2,
4
√

2, . . .) : Q] = m,

which is a contradiction since n > m and so it can not divide m. Thus Q(
√

2, 3
√

2, 4
√

2, . . .)
could not have been finite over Q.
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4 . Suppose that p(x) ∈ F [x] is an irreducible polynomial and E is a finite extension field of
F . If deg p(x) and [E : F ] are relatively prime, show that p(x) is irreducible over E.

SOLUTION:
Let Ē be some algebraic closure of E, and let α ∈ Ē be some root of the polynomial p(x).

Then we consider the extension E(α) over F . There are two subfields of E(α) of interest:
F (α) and E. The first observation is that

[E(α) : E] ≤ [F (α) : F ]

since p(x) is certainly a polynomial with coefficients in E of which α is a root. Then
comparing extensions we have

[E(α) : E][E : F ] = [E(α) : F (α)][F (α) : F ].

But we are given that [E : F ] is relatively prime to [F (α) : F ] and so it must then follow
that [E : F ]|[E(α) : F (α)] and in particular that

[E : F ] ≤ [E(α) : F (α)].

The equality above is only possible if each of the inequalities above is an equality. In
particular we must have [E(α) : E] = [F (α) : F ], and it follows that p(x) is irreducible over
E.
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5 . Let E be an extension field of a field F . Let α ∈ E be an element with α /∈ F . Show
that multiplication by α induces a linear automorphism of E as a vector space over F . I.e.

φ : E → E

by
x 7→ αx.

Show that this is not an automorphism of E as a field.

SOLUTION:
To show that φ is a linear automorphism we must show that it is a linear map, with an

inverse.
To show that it is a linear map, we must show that φ(x+y) = φ(x)+φ(y) for all x, y ∈ E,

and that φ(λx) = λφ(x) for all x ∈ E and all λ ∈ F .
Let us check this now. Let x, y ∈ E. Then

φ(x+ y) = α(x+ y) = αx+ αy = φ(x) + φ(y).

Similarly, let x ∈ E and λ ∈ F . Then

φ(λx) = α(λx) = λ(αx) = λφ(x).

The inverse of φ is given by the map x 7→ α−1x (α /∈ F implies in particular that α 6= 0).
One can check in the same way that this is a linear map. Thus we have checked that φ is a
linear automorphism of E.

This is not a ring homomorphism. Indeed, we have φ(1) = α 6= 1 since α is not in F .
(You can also check that φ(xy) 6= φ(x)φ(y).)
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6 . Show that xp
n−x is the product of all monic irreducible polynomials in Zp[x] of a degree

d dividing n.

SOLUTION:
Fix an algebraic closure Z̄p of Zp. Let Fpn be the subfield with pn elements; we have proven

a theorem that these are exactly the roots in Z̄p of the polynomial xp
n − x. We will also

want to use the following claim: d|n if and only if Fpd ⊆ Fpn . We will give a proof of the
claim at the end. For now we will use the claim to give a solution to the problem.

Step 1: If f(x) is a monic irreducible polynomial of degree d dividing n, then
f(x) divides xp

n − x.
To prove this, let f(x) be a monic irreducible polynomial of degree d dividing n, and let

α ∈ Z̄p be a root. We have |Zp(α)| = pd; thus Zp(α) = Fpd , and so Zp(α) ⊆ Fpn (since d|n).
In particular, α is also a root of xp

n − x, and so by definition of the irreducible polynomial,
f(x) divides xp

n − x, proving Step 1.
Step 2: If f(x) is a monic irreducible polynomial dividing xp

n − x then d|n.
Indeed, suppose that f(x) is a monic irreducible polynomial dividing xp

n − x. Say the
degree of f(x) is equal to d. We have seen that f(x) defines a degree d extension F(α) of
Zp, for some α ∈ Z̄p. The order of F(α) is pd, and thus the extension is equal to Fpd . Now
α is a root of f(x), which divides xp

n − x, and thus α is a root of xp
n − x. Thus Fpd ⊆ Fpn ,

and so d|n.
Step 3: Finishing the proof.
From Steps 1 and 2 it follows that the irreducible monic polynomials dividing xp

n − x are
exactly the irreducible monic polynomials of degree d|n. Let f1, . . . , fN be these irreducible
monic polynomials of degree d|n. Since Zp[x] is a UFD, it follows that

xp
n − x =

N∏
i=1

fai
i

for some natural numbers a1, . . . , aN . In fact, the ai are all equal to 1, since we have proven
a theorem that the polynomial xp

n − x has no multiple roots. This completes the proof, up
to the claim we made at the beginning.

Step 4: The proof of the Claim.
Recall that we used the claim: d|n if and only if Fpd ⊆ Fpn . We prove this now. We start

by proving the “if” implication ( =⇒ ). So assume d|n. We observe that the elements of Fpd

are exactly the roots of xp
d − x. Now let α ∈ Fpd . We will show that α ∈ Fpn . Indeed,

αpn − α =
(

(αpd)p
d

. . .
)pd

︸ ︷︷ ︸
n/d times

−α = α− α = 0,

proving that Fpd ⊆ Fpn .
For the proof of the other direction of the claim (⇐=), we start by assuming Fpd ⊆ Fpn .

Now, since n = [Fpn : Zp] = [Fpn : Fpd ][Fpd : Zp] = [Fpn : Fpd ]d it follows that d|n.
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