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10 points

1. Let R be a ring (commutative with unity 1 # 0) and let S be any subset of R. Show
that the subset

A={reR:rs=0forall se S}
is an ideal.

SOLUTION:

We will show that A is a subgroup of R, and that it is closed under multiplication by
elements of R. To show that A is a subgroup, it suffices to check that if a;,as € A, then
a1 — as € A. To check this, we observe that for any s € §

(a1 —az)s = a1s —ags =0—0=0,

and thus a; — as € A.
Now we will show that A is closed under multiplication by elements of R. Indeed, let
a € Aand r € R. Then for any s € S we have
(ra)s =r(as) =0,

proving the claim. Thus the set A is a subgroup of R closed under multiplication by elements
of R, and so it is an ideal of R.
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2 . Consider the number a := /2 — /5 € R.

2 (a). Show that « is algebraic over Q by finding a polynomial p(x) € Q[z] such that
pla) = 0.
2 (b). Find the degree [Q(«) : Q.

SOLUTION:
For part (a), we start with the observation that

a=12-V5 &= a*=2-V5 < ... &= o’ —6a'+12a* -3 =0.

Thus the p(x) = z° — 62* + 122? — 3 is a solution to part (a).
For part (b), we use Eisenstein’s Criterion to determine that p(x) is irreducible. Conse-
quently, the degree [Q(«) : Q] = 6.
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3 . Show that the field Q(v/2, V/2, v/2, . ..) is algebraic over Q, but not finite.

SOLUTION:
To show that Q(v/2, /2, v/2,...) is algebraic over Q we must show that each

reQ(V2,V2,v2,..)

is algebraic over Q. Since Q(v2,V2,v2,...) = U,y Q(V2, V2, ..., ¥/2), we must have
r € Q(v2,V?2,...,/2) for some n, and it then suffices to show that /2 is algebraic over Q
for each n. This is clear since /2 is a root of the polynomial 2™ — 2 € Q|x].

We now show that Q(v/2,v/2,v/2,...) is not finite over Q. Pursuing a proof by contradic-
tion, assume that [Q(\/i, V2,32, .. .) : Q] = m for some m € N. Then take a natural number
n > m. By Eisenstein’s Criterion, 2" — 2 € Q[z] is irreducible, and so [Q(+/2) : Q] = n. On
the other hand, since Q C Q(/2) C Q(v2,v/2,v/2,...), we have

n=[Q(V2): QQ(V2,v2,V2,...): Q = m,

which is a contradiction since n > m and so it can not divide m. Thus @(\/5, V2,v2, .. )
could not have been finite over Q.
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4 . Suppose that p(z) € Fz] is an irreducible polynomial and F is a finite extension field of
F. If degp(x) and [E : F| are relatively prime, show that p(x) is irreducible over E.

SOLUTION: )

Let E be some algebraic closure of F, and let a € F be some root of the polynomial p(x).
Then we consider the extension F(«) over F. There are two subfields of F(«) of interest:
F(«a) and E. The first observation is that

[E(a) : E] < [F(e) : F]
since p(x) is certainly a polynomial with coefficients in F of which « is a root. Then
comparing extensions we have

[E(a) : E|[E: F] = [E(«a) : F(a)][F(a): F].

But we are given that [E : F] is relatively prime to [F(«) : F] and so it must then follow
that [E : F||[E(«a) : F(a)] and in particular that

B F] < [E(a) : F(a)].
The equality above is only possible if each of the inequalities above is an equality. In

particular we must have [E(«) : E] = [F(«) : F], and it follows that p(z) is irreducible over
E.
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5. Let E be an extension field of a field F'. Let o« € E be an element with a@ ¢ F. Show
that multiplication by « induces a linear automorphism of E as a vector space over F'. l.e.

¢o:EFE—F

by
T — ax.
Show that this is not an automorphism of E as a field.

SOLUTION:

To show that ¢ is a linear automorphism we must show that it is a linear map, with an
inverse.

To show that it is a linear map, we must show that ¢(z+vy) = ¢(z)+ ¢(y) for all z,y € E,
and that ¢p(Ax) = \¢p(x) for all z € E and all A € F.

Let us check this now. Let x,y € E. Then

Oz +y) =alr+y) = ar+ay = o(x) + o(y).
Similarly, let z € F and A € F. Then
o(Ar) = a(Ax) = Max) = Ao(x).
The inverse of ¢ is given by the map z — o'z (a ¢ F implies in particular that a # 0).
One can check in the same way that this is a linear map. Thus we have checked that ¢ is a
linear automorphism of E.

This is not a ring homomorphism. Indeed, we have ¢(1) = a # 1 since « is not in F.
(You can also check that ¢(zy) # ¢(x)o(y).)



6

10 points

6 . Show that 27" —z is the product of all monic irreducible polynomials in Z,[x] of a degree
d dividing n.

SOLUTION:

Fix an algebraic closure Zp of Z,. Let IF,» be the subfield with p™ elements; we have proven
a theorem that these are exactly the roots in Z, of the polynomial z*" — x. We will also
want to use the following claim: d|n if and only if Fe C Fyn. We will give a proof of the
claim at the end. For now we will use the claim to give a solution to the problem.

Step 1: If f(x) is a monic irreducible polynomial of degree d dividing n, then
f(x) divides 2" — .

To prove this, let f(z) be a monic irreducible polynomial of degree d dividing n, and let
o € Z, be a root. We have |Z,(«)| = p%; thus Z,(«) = F e, and so Z,(a) C Fy= (since d|n).
In particular, « is also a root of 27" — z, and so by definition of the irreducible polynomial,
f(x) divides 2?" — x, proving Step 1.

Step 2: If f(x) is a monic irreducible polynomial dividing 2" — 2 then d|n.

Indeed, suppose that f(z) is a monic irreducible polynomial dividing 2?" — z. Say the
degree of f(z) is equal to d. We have seen that f(x) defines a degree d extension F(«a) of
Z,, for some a € Zp. The order of F(a) is p?, and thus the extension is equal to F,i. Now
a is a oot of f(x), which divides 2P" — x, and thus « is a root of 27" — 2. Thus Fpa CFpn,
and so d|n.

Step 3: Finishing the proof.

From Steps 1 and 2 it follows that the irreducible monic polynomials dividing 2?" — x are
exactly the irreducible monic polynomials of degree d|n. Let fi,..., fy be these irreducible
monic polynomials of degree d|n. Since Z,[z] is a UFD, it follows that

N
Pt . a;
=1

for some natural numbers aq,...,ay. In fact, the a; are all equal to 1, since we have proven
a theorem that the polynomial z*" — z has no multiple roots. This completes the proof, up
to the claim we made at the beginning.

Step 4: The proof of the Claim.

Recall that we used the claim: d|n if and only if F,« C F,». We prove this now. We start
by proving the “if” implication ( = ). So assume d|n. We observe that the elements of [Fq

are exactly the roots of 27" — 2. Now let a € F,a. We will show that o € [F;». Indeed,

" p?

ol —a= ((apd)pd...) —a=a—a=0,
—_——
n/d times
proving that Fja C Fpn.
For the proof of the other direction of the claim (<), we start by assuming F,a C Fyn.

Now, since n = [Fpn : Zp| = [Fpn : Fpa][Fpa : Zy] = [Fpn : Fa]d it follows that d|n.
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