SAMPLE MIDTERM I

MATH 4140

DATE

Name

Please answer the all of the questions, and show your work.

Date: February 22, 2010.

1	
10	points

1 . Let R be a ring (commutative with unity $1\neq 0)$ and let A be any subset of R. Show that the subset

$$\{r \in R : ra = 0 \text{ for all } a \in A\}$$

is an ideal.

2	
10	points

Consider the number $\alpha := \sqrt{2 - \sqrt[3]{5}} \in \mathbb{R}$. 2 (a). Show that α is algebraic over \mathbb{Q} by finding a polynomial $p(x) \in \mathbb{Q}[x]$ such that $p(\alpha) = 0.$

2 (b). Find the degree $[\mathbb{Q}(\alpha) : \mathbb{Q}]$.

3	
10	points

Show that the field $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}, \sqrt[4]{2}, \ldots)$ is algebraic over \mathbb{Q} , but not finite.

4	
10	points

4. Suppose that $p(x) \in F[x]$ is an irreducible polynomial and E is a finite extension field of F. If deg p(x) and [E:F] are relatively prime, show that p(x) is irreducible over E.

5	
10	points

5. Let *E* be an extension field of a field *F*. Let $\alpha \in E$ be an element with $\alpha \notin F$. Show that multiplication by α induces a linear automorphism of *E* as a vector space over *F*. I.e.

$$\phi: E \to E$$

by

 $x \mapsto \alpha x.$

Show that this is not an automorphism of E as a field.

6 10 points

Show that $x^{p^n} - x$ is the product of all monic irreducible polynomials in $\mathbb{Z}_p[x]$ of a degree d dividing n.