ABSTRACT ALGEBRA 2 PRACTICE EXAM AND HOMEWORK

1. PRACTICE EXAM PROBLEMS

Problem A. Find $\alpha \in \mathbb{C}$ such that $\mathbb{Q}(i, \sqrt[3]{2}) = \mathbb{Q}(\alpha)$.

Problem B. Let ϕ_2 be the Frobenius automorphism of \mathbb{F}_4 , the field with 4 elements. Let $0, 1, \alpha, \beta$ be the elements of \mathbb{F}_4 . Describe ϕ_2 by indicating the image of each element of \mathbb{F}_4 under this map (e.g. $\phi_2(0) = 0$).

Problem C. Give an example of a degree two field extension that is not Galois.

Problem D. Let $\zeta \in \mathbb{C}$ be a primitive 5-th root of unity. Find all field extensions K of \mathbb{Q} contained in $\mathbb{Q}(\zeta)$. For each such field extension, find an element $\alpha \in \mathbb{Q}(\zeta)$ such that $K = \mathbb{Q}(\alpha)$.

Problem E. Let F be a field. For a polynomial $f(x) = \sum_{i=0}^{n} a_i x^i \in F[x]$ we define the derivative f'(x) of f(x) to be the polynomial

$$f'(x) = \sum_{i=1}^{n} i a_i x^{i-1}.$$

- (a) Show that the map $D: F[x] \to F[x]$ given by D(f(x)) = f'(x) is a linear map of vector spaces.
- (b) Find $\ker(D)$. [Hint: The answer may depend on the characteristic of F.]
- (c) Show that D satisfies the Leibniz rule: D(f(x)g(x)) = D(f(x))g(x) + f(x)D(g(x)) for all $f(x), g(x) \in F[x]$.
- (d) Show that $D((f(x)^m)) = mf(x)^{m-1}D(f)$ for each $m \in \mathbb{Z}_{\geq 0}$.

Problem F. Let \overline{F} be an algebraic closure of a field F. Show that $f(x) \in F[x]$ has a root $\alpha \in \overline{F}$ of multiplicity $\mu > 1$ if and only if α is a root of both f(x) and f'(x). [Hint: Consider the factorization $f(x) = (x - \alpha)^{\mu}g(x)$ in $\overline{F}[x]$ and use the previous problem.]

Problem G. Let F be a field, and let t be a variable. Let

$$s = \frac{p(t)}{q(t)} \in F(t).$$

and let $F(s) \hookrightarrow F(t)$ be the associated inclusion of fields. Assuming $s \notin F$, and p(t) and q(t) have no common irreducible factors, show that

$$[F(t):F(s)] = \max(\deg(p(t)), \deg(q(t))).$$

[Hint: Consider the polynomial $p(X) - sq(X) \in F(s)[X]$ and recall that if D is a UFD with field of fractions K, and $f(X) \in D[X]$ is a primitive polynomial, then f(X) is irreducible in D[X] if and only if it is irreducible in K[X].]

Date: April 19, 2010.

Problem H. Let E/F be an extension of fields. Let K_1, K_2 be two finite field extensions of F contained in E. Show that if K_1 is a normal extension of F, then K_1K_2 is a normal extension of K_2 .

Problem I (Optional). Let E be a finite Galois extension of a field F. Let K_1 and K_2 be two extensions of F contained in E. We obtain a diagram of field extensions

Show that $G(E/(K_1K_2)) = G(E/K_1) \cap G(E/K_2) \subseteq G(E/F)$ and $G(E/(K_1 \cap K_2))$ is the subgroup G of G(E/F) generated by the set

$$G(E/K_1)G(E/K_2) = \{\sigma_1\sigma_2 : \sigma_1 \in G(E/K_1), \sigma_2 \in G(E/K_2)\}.$$

[Hint: For the first part, to show $G(E/(K_1K_2)) \supseteq G(E/K_1) \cap G(E/K_2)$, come up with a useful description of the elements of K_1K_2 in terms of those in K_1 and K_2 . For the second part, use Galois theory to show $E^G = K_1 \cap K_2$.]

Problem J. Let E/F be an extension of fields. Let K_1, K_2 be two field extensions of F contained in E. If K_1 is a finite Galois extension of F, then K_1K_2 is Galois over K_2 . Moreover, there is an isomorphism

$$\phi: G(K_1K_2/K_2) \to G(K_1/(K_1 \cap K_2))$$

given by $\sigma \mapsto \sigma|_{K_1}$.

2. Homework on $\mathbb{P}GL_2(F)$

Problem K. Let F be a field, and let $M_2(F)$ be the set of 2×2 matrices with entries in F. The group of invertible matrices, $GL_2(F)$, is the subset consisting of those matrixes $A \in M_2(F)$ such that $\det(A) \neq 0$. For $\lambda \in F$, we will denote by $[\lambda]$ the matrix entries λ on the diagonal, and zeros in every other entry. In other words,

$$[\lambda] = \left(\begin{array}{cc} \lambda & 0\\ 0 & \lambda \end{array}\right)$$

(1) Show that we may define an equivalence relation on $GL_n(F)$ by setting

$$A \sim A$$

whenever $A, A' \in GL_n(F)$ and there exists $\lambda \in F^*$ such that $A = [\lambda]A'$.

(2) We define a set $\mathbb{P}GL_2(F)$ to be the quotient of $GL_2(F)$ by this equivalence relation. I.e.

$$\mathbb{P}GL_2(F) = GL_2(F) / \sim .$$

We will use the notation \overline{A} for the equivalence class of a matrix $A \in GL_2(F)$ in $PGL_2(F)$. Show that $\mathbb{P}GL_2(F)$ is a group under the composition law given by $\overline{A}\overline{A}' = \overline{AA'}$.

Problem L. Let F be a field. Let G be the subset of $F(x)^*$ consisting of elements of the form

$$\frac{ax+b}{cx+d}$$

such that there does not exist $\lambda \in F^*$ such that $ax + b = \lambda(cx + d)$.

(1) Show that

$$G = \left\{ \frac{ax+b}{cx+d} \in F(x)^* : ad - bc \neq 0 \right\}.$$

- (2) Show that G is a group under composition.
- (3) Show that there is a group isomorphism

$$G \to \mathbb{P}GL_2(F)$$

given by

$$\frac{ax+b}{cx+d} \mapsto \overline{\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)}.$$

3. Optional homework problems on \mathbb{P}^1_F

Problem M. Let F be a field.

(1) Show that we may define an equivalence relation on $F^2 - (0,0)$ by setting

$$(x_0, x_1) \sim (x'_0, x'_1)$$

if and only if there exists $\lambda \in F^*$ such that $(x_0, x_1) = (\lambda x'_0, \lambda x'_1)$.

(2) We define the projective line over F, denoted \mathbb{P}_F^1 , to be the quotient of $F^2 - (0,0)$ by this equivalence relation. I.e.

$$\mathbb{P}_F^1 = \left(F^2 - (0,0)\right) / \sim 1$$

We use the notation $[x_0:x_1]$ for the equivalence class of (x_0,x_1) in \mathbb{P}^1 . Now let

$$U_0 = \{ [x_0 : x_1] \in \mathbb{P}_F^1 : x_0 \neq 0. \}$$

Show that there is a bijection of sets

$$F \to U_0 \subset \mathbb{P}^1_F$$

given by $a \mapsto [1:a]$.

(3) Show that

$$\mathbb{P}_F^1 = U_0 \sqcup [0:1].$$

In other words, using (2) we can think of the projective line as our field F together with one "extra" point. This point is typically called the point at infinity.

Problem N. Let F be a field. A polynomial $f(X_0, X_1) \in F[X_0, X_0]$ is homogeneous of degree $d \in \mathbb{Z}_{\geq 0}$ if each monomial (with non-zero coefficient) in $f(X_0, X_1)$ is of degree d. For instance, $X_0^2 - X_0 X_1$ is homogeneous of degree 2, whereas $X_0^2 - X_1$ is not homogeneous. In general, we may write a homogeneous polynomial of degree d in the form

$$f(X_0, Y_0) = \sum_{i=0}^d a_i X_0^{d-i} X_1^i,$$

for some $a_0, \ldots, a_d \in F$.

(1) Show that if $f(X_0, X_1) \in F[X_0, X_1]$ is homogenous of degree d then for each $\lambda \in F$,

$$f(\lambda X_0, \lambda X_1) = \lambda^d f(X_0, X_n).$$

(2) Use part (1) to show that if $f_0(X_0, X_1)$ and $f_1(X_0, X_1)$ are homogeneous polynomials of degree d > 0 with no common roots in F, then there is a well defined map of sets

$$f:\mathbb{P}^1_F\to\mathbb{P}^1_F$$

given by $[x_0 : x_1] \mapsto [f_0(x_0, x_1) : f_1(x_0, x_1)].$

(3) Assume that F is algebraicly closed and char(F) = p. Show that the map in (2) is bijective if and only if $f_0 = (a_0X_0 + b_0X_1)^{p^m}$ and $f_1 = (a_1X_0 + b_1X_1)^{p^m}$ for some integer $m \ge 0$, and some $a_0, a_1, b_0, b_1 \in F$. We use the convention that $0^m = 1$ for all m.

Problem O. Let F be a field.

(1) Consider the subset

$$F(X_0, X_1)_0 := \begin{cases} \frac{p(X_0, X_1)}{q(X_0, X_1)} \in F(X_0, X_1) : p, q \in F[X_0, X_1], q \neq 0, \text{and} \end{cases}$$

p, q are homogeneous of the same degree}

Show that this is a subfield of $F(X_0, X_1)$.

(2) Show that there is an isomorphism of fields

$$\Phi: F(x) \to F(X_0, X_1)_0$$

given by

$$\frac{\sum_{i=0}^{n} a_i x^i}{\sum_{j=0}^{m} b_j x^j} \mapsto X_0^{m-n} \frac{\sum_{i=0}^{n} a_i X_0^{n-i} X_1^i}{\sum_{j=0}^{m} b_j X_0^{m-j} X_1^j}$$