
ABSTRACT ALGEBRA 2 PRACTICE EXAM AND HOMEWORK

1. Practice exam problems

Problem A. Find α ∈ C such that Q(i, 3
√

2) = Q(α).

Problem B. Let φ2 be the Frobenius automorphism of F4, the field with 4 elements. Let
0, 1, α, β be the elements of F4. Describe φ2 by indicating the image of each element of F4

under this map (e.g. φ2(0) = 0).

Problem C. Give an example of a degree two field extension that is not Galois.

Problem D. Let ζ ∈ C be a primitive 5-th root of unity. Find all field extensions K of
Q contained in Q(ζ). For each such field extension, find an element α ∈ Q(ζ) such that
K = Q(α).

Problem E. Let F be a field. For a polynomial f(x) =
∑n

i=0 aix
i ∈ F [x] we define the

derivative f ′(x) of f(x) to be the polynomial

f ′(x) =
n∑
i=1

iaix
i−1.

(a) Show that the map D : F [x] → F [x] given by D(f(x)) = f ′(x) is a linear map of
vector spaces.

(b) Find ker(D). [Hint: The answer may depend on the characteristic of F .]
(c) Show that D satisfies the Leibniz rule: D(f(x)g(x)) = D(f(x))g(x) + f(x)D(g(x))

for all f(x), g(x) ∈ F [x].
(d) Show that D((f(x)m)) = mf(x)m−1D(f) for each m ∈ Z≥0.

Problem F. Let F̄ be an algebraic closure of a field F . Show that f(x) ∈ F [x] has a root
α ∈ F̄ of multiplicity µ > 1 if and only if α is a root of both f(x) and f ′(x). [Hint: Consider
the factorization f(x) = (x− α)µg(x) in F̄ [x] and use the previous problem.]

Problem G. Let F be a field, and let t be a variable. Let

s =
p(t)

q(t)
∈ F (t).

and let F (s) ↪→ F (t) be the associated inclusion of fields. Assuming s /∈ F , and p(t) and
q(t) have no common irreducible factors, show that

[F (t) : F (s)] = max(deg(p(t)), deg(q(t))).

[Hint: Consider the polynomial p(X)− sq(X) ∈ F (s)[X] and recall that if D is a UFD with
field of fractions K, and f(X) ∈ D[X] is a primitive polynomial, then f(X) is irreducible in
D[X] if and only if it is irreducible in K[X].]
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Problem H. Let E/F be an extension of fields. Let K1, K2 be two finite field extensions
of F contained in E. Show that if K1 is a normal extension of F , then K1K2 is a normal
extension of K2.

Problem I (Optional). Let E be a finite Galois extension of a field F . Let K1 and K2 be
two extensions of F contained in E. We obtain a diagram of field extensions

E

K1K2

IIIIIIIII

uuuuuuuuu

K1

IIIIIIIII K2

uuuuuuuuu

K1 ∩K2

F

Show that G(E/(K1K2)) = G(E/K1) ∩ G(E/K2) ⊆ G(E/F ) and G(E/(K1 ∩ K2) is the
subgroup G of G(E/F ) generated by the set

G(E/K1)G(E/K2) = {σ1σ2 : σ1 ∈ G(E/K1), σ2 ∈ G(E/K2)}.
[Hint: For the first part, to show G(E/(K1K2)) ⊇ G(E/K1) ∩ G(E/K2), come up with a
useful description of the elements of K1K2 in terms of those in K1 and K2. For the second
part, use Galois theory to show EG = K1 ∩K2.]

Problem J. Let E/F be an extension of fields. Let K1, K2 be two field extensions of
F contained in E. If K1 is a finite Galois extension of F , then K1K2 is Galois over K2.
Moreover, there is an isomorphism

φ : G(K1K2/K2)→ G(K1/(K1 ∩K2))

given by σ 7→ σ|K1 .

2. Homework on PGL2(F )

Problem K. Let F be a field, and let M2(F ) be the set of 2 × 2 matrices with entries
in F . The group of invertible matrices, GL2(F ), is the subset consisting of those matrixes
A ∈ M2(F ) such that det(A) 6= 0. For λ ∈ F , we will denote by [λ] the matrix entries λ on
the diagonal, and zeros in every other entry. In other words,

[λ] =

(
λ 0
0 λ

)
(1) Show that we may define an equivalence relation on GLn(F ) by setting

A ∼ A′

whenever A,A′ ∈ GLn(F ) and there exists λ ∈ F ∗ such that A = [λ]A′.
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(2) We define a set PGL2(F ) to be the quotient of GL2(F ) by this equivalence relation.
I.e.

PGL2(F ) = GL2(F )/ ∼ .

We will use the notation Ā for the equivalence class of a matrix A ∈ GL2(F ) in
PGL2(F ). Show that PGL2(F ) is a group under the composition law given by
ĀĀ′ = AA′.

Problem L. Let F be a field. Let G be the subset of F (x)∗ consisting of elements of the
form

ax+ b

cx+ d
such that there does not exist λ ∈ F ∗ such that ax+ b = λ(cx+ d).

(1) Show that

G =

{
ax+ b

cx+ d
∈ F (x)∗ : ad− bc 6= 0

}
.

(2) Show that G is a group under composition.
(3) Show that there is a group isomorphism

G→ PGL2(F )

given by

ax+ b

cx+ d
7→
(
a b
c d

)
.

3. Optional homework problems on P1
F

Problem M. Let F be a field.

(1) Show that we may define an equivalence relation on F 2 − (0, 0) by setting

(x0, x1) ∼ (x′0, x
′
1)

if and only if there exists λ ∈ F ∗ such that (x0, x1) = (λx′0, λx
′
1).

(2) We define the projective line over F , denoted P1
F , to be the quotient of F 2 − (0, 0)

by this equivalence relation. I.e.

P1
F =

(
F 2 − (0, 0)

)
/ ∼ .

We use the notation [x0 : x1] for the equivalence class of (x0, x1) in P1. Now let

U0 = {[x0 : x1] ∈ P1
F : x0 6= 0.}

Show that there is a bijection of sets

F → U0 ⊂ P1
F

given by a 7→ [1 : a].
(3) Show that

P1
F = U0 t [0 : 1].

In other words, using (2) we can think of the projective line as our field F together
with one “extra” point. This point is typically called the point at infinity.
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Problem N. Let F be a field. A polynomial f(X0, X1) ∈ F [X0, X0] is homogeneous of
degree d ∈ Z≥0 if each monomial (with non-zero coefficient) in f(X0, X1) is of degree d. For
instance, X2

0 −X0X1 is homogeneous of degree 2, whereas X2
0 −X1 is not homogeneous. In

general, we may write a homogeneous polynomial of degree d in the form

f(X0, Y0) =
d∑
i=0

aiX
d−i
0 X i

1,

for some a0, . . . , ad ∈ F .

(1) Show that if f(X0, X1) ∈ F [X0, X1] is homogenous of degree d then for each λ ∈ F ,

f(λX0, λX1) = λdf(X0, Xn).

(2) Use part (1) to show that if f0(X0, X1) and f1(X0, X1) are homogeneous polynomials
of degree d > 0 with no common roots in F , then there is a well defined map of sets

f : P1
F → P1

F

given by [x0 : x1] 7→ [f0(x0, x1) : f1(x0, x1)].
(3) Assume that F is algebraicly closed and char(F ) = p. Show that the map in (2) is

bijective if and only if f0 = (a0X0 + b0X1)
pm

and f1 = (a1X0 + b1X1)
pm

for some
integer m ≥ 0, and some a0, a1, b0, b1 ∈ F . We use the convention that 0m = 1 for all
m.

Problem O. Let F be a field.

(1) Consider the subset

F (X0, X1)0 :=

{
p(X0, X1)

q(X0, X1)
∈ F (X0, X1) : p, q ∈ F [X0, X1], q 6= 0, and

p, q are homogeneous of the same degree}
Show that this is a subfield of F (X0, X1).

(2) Show that there is an isomorphism of fields

Φ : F (x)→ F (X0, X1)0

given by ∑n
i=0 aix

i∑m
j=0 bjx

j
7→ Xm−n

0

∑n
i=0 aiX

n−i
0 X i

1∑m
j=0 bjX

m−j
0 Xj

1
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